Tb/s Chip I/O - how close are we to practical reality?

Rick Walker Hewlett-Packard Company Palo Alto, California *walker@opus.hpl.hp.com*

Agenda

- Applications and Key Specifications
- General Architecture for inter-chip communication
- Limitations
 - Skin-Loss
 - Delay Matching for Multi-phase sampling
 - CMOS Scaling
- Industry Trends
- Conclusions

Current Practice

- Current high-performance systems are skew limited using parallel data clocked at 250-500Mb/s.
- Using clock and data recovery on Gb/s links eliminates the skew problem and improves system BW by factor of 8-16X.
 - What are the limits for advanced systems?

CPU-CPU/Memory Application

Backplane

Key Specifications

- Speed: As high as possible at least 1Tb/s I/O per chip
- Latency: critical less than 10ns plus time of flight
- BW/link: limited to 4-5 Gb/s by PCB loss
- Power: for a 100W chip, all 250 links should dissipate less than 40W -> 160 mW per link
- Size: a typical processor may be 9cm², if links use 20% of the total area, then each 4Gb/s link cell should be less than 720000um² in size.

General Architecture

Skin Loss and Dielectric Loss

Nearly all cables are well modeled by a product of Skin Loss

 $S(f) = e^{-k_s(1+j)l\sqrt{f}}$, and Dielectric Loss $D(f) = e^{-k_d lf}$ with appropriate k_s,k_d factors. Dielectric Loss dominates in the multi-GHz range. Both plot as straight lines on log(dB) vs log(f) graph.

Skin Loss and Dielectric Loss

Two effects are operating in balance:

current filaments in conductor and ground attract each other

resistive drops tend to force current to spread out and flow evenly

The net result is that current flows in a "skin" near the surface of the conductor towards the ground plane.

Current density falls off exponentially with depth and the depth is proportional to sqrt(f).

Skin Loss in the time domain

Dielectric Loss in the time domain

Non-equalized NRZ data

Skin Loss Equalization at Transmitter boost the first pulse after every transition

before

6dB Equalized Data

Skin Loss

Data rate vs distance and tan(δ)

Communication Trends

Example Multiphase RX Block Diagram

Measurement of a Multi-phase System

Reported Jitter: 8ps rms, 44ps pk-pk at 3.5Gb/s.

Measurement of photo shows 26ps difference between widest and narrowest eye, so true eye margin for endend system is $44ps\sqrt{2} + 2 \cdot 26ps = 118ps$, or a total eye closure of 41%.

Attention to delay *matching* is critical!

Techniques to Improve Delay Matching and Power Supply Noise Immunity

CMOS Scaling Issues

• Gate delay no longer scales with process

See: Chenming Hu, "Low-Voltage CMOS Device Scaling" 1994 ISSCC Digest, pp 86-87.

CMOS Scaling Issues (continued)

- V_t doesn't track with power supply so we gradually lose ability to make ECL-like differential circuits.
- Full-swing circuits show worse delay matching than ECL-like topologies.
- Full-swing circuits show worse power-supply delay modulation than differential circuits.
- V_t matching gets worse due to statistical dopant variations in channel.
 - All of these trends make power supply noise rejection and multi-phase alignment more difficult with each process scaling.

Power and die size vs target

Industry Trends

• 50% of all U.S. Families now have home computers

- Computer performance has surpassed needs of most users: witness the drop of P.C. prices in the last 3 years from a stable \$2K down to \$500 levels.
- Internet host count was doubling every 6 months in 1988, is now doubling every 24 months - we are clearly past the 50% adoption point in the growth curve.
- What applications will continue to drive expensive and exotic improvements in interconnect technology?
 - Without a new "killer app" to drive development, we may by stuck with the limitations of FR4/CMOS for quite some time.

Viability of "exotic" technologies

- Yielded CMOS parts come in at \$10/cm²
- Tb/s chip-chip links are probably feasible in the next few years.
- This performance can be achieved with existing BGA packages across commodity FR-4 PC Backplanes.
- The incremental cost of a Tb/s link in these applications will be about \$18 + connector cost.
 - For optical solutions to take hold in these applications, they must provide either significantly higher performance (>10Tb/s) or cheaper system cost (not likely).

Logistic growth law

- Natural systems grow in a sigmoidal fashion.
- Early in the colonization of an ecological niche, the growth looks exponential.
- In the mature phase, steady state is reached until a competitor arises to outcompete the incumbent.

Meyer, Yung, & Ansubel, Technological Forecasting & Social Change 61(3):247-271, 1999

Conclusions

- Still much work to be done, but 1 Tb/s chip I/O seems an attainable target.
- 5Gb/s on 1 meter PCB is the fastest that can be feasibly supported for the foreseeable future with *low latency*.
- Fiber seems to be progressing along either a 1-10-100-1000-10,000MHz or a 622-2488-10,000MHz evolutionary path. There may be an economically important need for 5Gb/s links.
- 10 Tb/s chip I/O is probably out of the question for current high-volume technologies (CMOS, FR-4 PCB). Computer designs and programs may have to give up cache coherency, and move towards cooperative computing architectures to break out of this limitation.