United States Patent

US006718491B1

(12) (10) Patent No.: US 6,718,491 B1
Walker et al. 5) Date of Patent: Apr. 6, 2004
(54) CODING METHOD AND CODER FOR 6,317,433 B1 * 11/2001 Galand et al. 370/395.2
CODING PACKETIZED SERIAL DATA WITH 6,389,036 B1 * 5/2002 Stewart et al. 370/466
LOW OVERHEAD * cited by examiner
(75) Inventors: Richard C. Walker, Palo Alto, CA Primary Examiner—Stephen M. Baker
(US); Bharadwaj Amrutur, Santa (74) Attorney, Agent, or Firm—an Hardcastle
Clara, CA (US); Richard W. Dugan,
San Jose, CA (US) 7 ABSTRACT
) . . Blocks of input data that include control words and a packet
(73) Assignee: Agilent Technologies, Inc., Palo Alto, of information words are received. The packet has a start
CA (US) preceded by ones of the control words and an end followed
. by others of the control words. The blocks are smaller than
(*) Notice: Sub]ect. to any dlsclalmer,. the term of this the packet. A determination of whether the block consists
patent is extended or adjusted under 35 exclusively of information words is made. When the block
U.S.C. 154(b) by 0 days. consists exclusively of information words, a master transi-
tion having a first sense is appended to the block to form a
(21) Appl. No.: 09/522,782 frame. When the block does not consist exclusively of
. information words, the block is condensed to accommodate
(22) Filed: Mar. 6, 2000 a TYPE word, the TYPE word is generated and inserted into
(51) Int. CL7 oo HO3M 13/47 the block and a master transition is appended to the block to
(52) US.Cli oo 714/701 form the frame. The TYPE word has a value that indicates
(58) Field of Searchc.cccceeeveniinennccnne. 714/701 one of the following structural properties of the block: (a)
the position of the start of the packet in the block, (b) the
(56) References Cited position of the end of the packet in the block, and (c) the
block being composed exclusively of control words. The
U.S. PATENT DOCUMENTS master transition appended to the block when the block does
5022051 A 6/1991 Crandall et al. ..o, 375/19 not consist exclusively of information words has a second
5438621 A 81995 Hornak et al. 380/43 sense, opposite to the first sense.
5,978,386 A * 11/1999 Hamalainen et al. 370/466
6,208,651 B1 * 3/2001 Van Renesse et al. 370/392 18 Claims, 14 Drawing Sheets
START 202

| RECEIVE BLOCKS OF INPUT DATA t" 203

BLOCK
EXCLUSIVELY INFORMATION
WORDS?

200

SCRAMBLE BLOCK 206

. 207
PRECEDE SCRAMBLED BLOCK WITH
MASTER TRANSITION N FIRST
SENSE TO FORM FRAME

204

, 205

GENERATE TYPE WORD,
CONDENSE BLOCK & INSERT
TYPE WORD (FIG. 5B)

212
SCRAMBLE BLOCK

, 13

PRECEDE SCRAMBLED BLOCK WITH
MASTER TRANSITION IN SECOND
SENSE, OPPOSITE TO FIRST SENSE

TO FORM FRAME

l

US 6,718,491 B1

Sheet 1 of 14

Apr. 6, 2004

U.S. Patent

IVIH3AS
s/a9 01~

14

A

VIAd
-/S3d

ozl g

. / & /
Y A — LN SS—
l m
4300930 ¥3000N3 |—
qg9/at9 ~ dol/agxy |
N\
4IQ0ON |+——| ¥300230 |«
- qg9/ay9 |« q01/agxy |+

vl

IVIN

cl

U.S. Patent Apr. 6, 2004 Sheet 2 of 14 US 6,718,491 B1

131 /130
LANE O KRKRKAKR@)DDDDDDDRKRKR

LANE 1 KRKRKAKRDDDDDDDDDRKRBRKR

LANE 2 . KRKRKAKRDDDDDDDDRKRKR

LANE 3 KRKRKAKRDDDDDDDDKRKRKR

132
FIG.2
INFO CTRL 2 PACKET
ONLY ONLY STARTS
—r — - ~
LANE 0 DD zz Hb) z[s]
LANE 1 DD ZZ DD ZD
LANE 2 DD z2 DD ZD
LANE 3 DD i DD ZD
BLOCK TYPE 1 2 3 4
FIG.3A FIG.3B FIG.3C

8 PACKET ENDINGS

LANEO [T]z Dz Dz Dz D[T] DD DD DD
LANE1 zZz [T]z Dz Dz Dz D[T] DD DD
LANE2 2zZ 2z [TJz Dz Dz Dz D[T] DD

LANE3 ZzZz zzZ 2z [T]z Dz DZ DZ DT
BLOCK TYPE 5 6 7 8 9 10 11 12

FIG.3D

U.S. Patent Apr. 6, 2004 Sheet 3 of 14 US 6,718,491 B1

150
2 e
B 64 BITS
151 152
FIG. 4A
/153
0|1 8 INFORMATION WORDS (64 BITS)
))
151 152
FIG. 4B
157 158
1[o| TYPE | CONTROL, INFORMATIONOR |, 158
8 BITS MIXED WORDS (56 BITS)
181 152

FIG. 4C

U.S. Patent Apr. 6, 2004 Sheet 4 of 14 US 6,718,491 B1

RECEIVE BLOCKS OF INPUT DATA —— 203

BLOCK 204
EXCLUSIVELY INFORMATION ,
GENERATE TYPE WORD,
CONDENSE BLOCK & INSERT
200 TYPE WORD (FIG. 5B)
v l 212
SCRAMBLE BLOCK 206 SCRAMBLE BLOCK
! _—207 PRECEDE SCRAMBLED BLOCK WITH
PRECEDE SCRAMBLED BLOCK WITH MASTER TRANSITION IN SECOND
MASTER TRANSITION IN FIRST SENSE, OPPOSITE TO FIRST SENSE
SENSE TO FORM FRAME TO FORM FRAME
\ 4 A 4
4
211
TRANSMIT FRAME | 2%8 A
NEXT BLOCK
A
209
ALL BLOCKS DONE?

210

FIG. 5A

U.S. Patent Apr. 6,2004

SopP
CONTROL WCRD IN
BLOCK?

Sheet 5 of 14

US 6,718,491 Bl

220

221

222

0

223 CONTROL WORD IN
SOP IN ALK
232
1ST QUADZ~ e
224 225 [DETERMINE EOP
v [~ 4 POSITION IN
GENERATE TYPE GENERATE TYPE BLOCK
WORD INDICATING WORD INDICATING
3
BLOCK TYPE 4 BLOCK TYPE 3 ! e 232 ve 230
l GENERATE TYPE GENERATE
y WORD INDICATING TYPE WORD
ONE OF BLOCK TYPES INDICATING
205 5 THRU 12 BLOCK TYPE 2
226 233
y / A 4 /-
COMPRESS BLOCK BY REMOVING COMPRESS BLOCK BY REMOVING
SOP CONTROL WORD FROM BLOCK EOP CONTROL WORD FROM BLOCK
y y
. y
4 227
COMPRESS BLOCK BY RE-CODING ¥~

CONTROL WORDS USING 7 BITS

\ 4
INSERT TYPE WORD AT K 228
HEAD OF BLOCK

4
RETURN

FIG. 5B

U.S. Patent Apr. 6, 2004 Sheet 6 of 14 US 6,718,491 B1

251

RECEIVE QUAD OF INPUT DATA [252

253 T
QUAD ALL INFO?

—

EOP CTRL. WORD?

257
N\

256

SOP CTRL. WORD?

DETERMINE EOP POSITION
—— 263

258
D
ADD CODE FOR EOP POSITION ?52 ADD SOP CODE
A

759 264
v~ ADD ALL-CTRL. A e
DUMP EOP CODE DUMP SOP

Y v Y
v 254

ADD ALL-INFO CODE RE-CODE CONTROL
WORDS TO 7 BITS

— 260

_//J' 261
y
GENERATE TYPE WORD FROM NEXT

QUAD-TYPE CODES OF THIS & 266 2657 QUAD
PREVIOUS QUADS 4

267
PE1?

_— 271
— 268 >

TRANSFER QUADS INTO BLOCK,
COMBINE QUADS INSERT TYPE WORD

y 269 vy /2
SCRAMBLE BLOCK SCRAMBLE BLOCK

v 20] —m
ADD MT IN FIRST SENSE ADD MT IN 2ND SENSE

A v

U.S. Patent

TYPE 1

TYPE 2

TYPE3

TYPE 4

TYPES

TYPE 6

Apr.6,2004 Sheet 7 of 14 US 6,718,491 Bl
0 4 -——160
R
2 | 6
3 | 7
/ 153
'D0:8 | D1:8 | D2:8 | D3:8 | D4:8 | D5:8 | D6:8 | D7:8
\151 152
FIG. 7A
(rveg| 207 | 207 | 2217 | 237 | 247 | 2517 | 2617 | 207
FIG. 7B
(vog)| D1:8 | D2:8 | D38 | D48 | D5:8 | D6:B | D7:8
FIG. 7C
:157 /158
—164 X 156
(roagy| 20:7 | 217 | 227 | z3:7 | X | D5:8 | D68 | D7:8
151 152
FIG. 7D
87 21:7 | 227 | 23:7 | za:7 | 257 | 26:7 | 217
(TYPE) 7| 227 | 737 | 24:7 | 757 | 267 | 21:
FIG. 7E
(rvpE| D08 z2:7| 237 | 287 | 25:7 | 267 | Z0:7

FIG. 7F

U.S. Patent Apr. 6, 2004 Sheet 8 of 14 US 6,718,491 B1

AA : . : 7 | z5:7 | z6:7 | Z27:7
TYPE7 |1l0 (TYPE) D0:8 | D1:8 23:7 | 247 | Z
FIG. 7G
B4 5:7 | 26:7 | Z7:7
TYPES |10 (TYPE) DO:8 | D1:8 | D2:8 Z4:7 | Z
FIG. 7H

TYPES [1|0].CC | po:8 m:s\nz:e D3:8 757 | 26:7 | 27:7

(TYPE)
FIG. 71

TYPE10 |10/ P2 | po:s | D1:8 | D2:8 | D3:8 | D4:8 Z26:7 | 27:7

(TYPE)
FIG. 7J

TYPE11 |1|0|.E! | Do m:s\nz:e D3:8 | D4:8 | D5:8 || Z7:7

(TYPE)
FIG. 7K

TYPE12 |1(0| FF | po:s | D1:8 | D2:8 | D3:8 | D4:8 | D5:8 | D6:8

(TYPE)
FIG. 7L

US 6,718,491 Bl

Sheet 9 of 14

Apr. 6, 2004

U.S. Patent

N39O
asom
IdAL

—w—\

‘NID 3dAL
'SNVHL
HILSVIN
. J 001
\
INVH 4319 4318 aa .
«~—4— -IN3SSV WVHIS avo1
INVHS ads | Lia-v9 d | g

mm—\

mw—\

Nw—\

A0014

US 6,718,491 Bl

-t
—
=
= HOLVHINID
m 90€ QYOM 3dAL
<P
-]
7z] 9lg :zﬂ 3dAL q
.) GlE 8l
S A y3g ‘
&
S 3IWvEd) | wassy]
& JNVYA LE
> 99 8¢ yng | L / HOLVHINID
1dS N3711vdvd id | gvolAvd
11g-v9

Smm . JL
LOE ot)

U.S. Patent

U.S. Patent

Apr. 6, 2004

Sheet 11 of 14 US 6,718,491 Bl

271

RECEIVE FRAME

—= 272

I

DESCRAMBLE SCRAMBLED PAYLOAD

——~ 2173

MASTER

274

TRANSITION IN FIRST
STAV
EXTRACT TYPE WORD FROM
270 PAYLOAD FIELD
EXPAND PAYLOAD FIELD USING
TYPE WORD (FIG. 9B)
A 4 A 4
l 280
ADOPT PAYLOAD AS BLOCK | ——277 \
OF RECEIVED DATA NEXT FRAME

ALL FRAMES DONE?

219

FIG. 9A

U.S. Patent Apr. 6, 2004 Sheet 12 of 14 US 6,718,491 B1

291

~PE 293

ORD INDICATES CTRL WORL
PAYLOAD?

USE TYPE WORD TO IDENTIFY PAYLOAD FIELD
PORTION OCCUPIED BY CODED CONTROL WORDS
AND NUMBER OF CODED CONTROL WORDS

DECODE CODED CONTROL WORD(S)

296

/(TYPE
ORD INDICATES SOP/EOP |
T——_PAYLOAD?

297

IDENTIFY PAYLOAD POSITION OF START OR END
OF PACKET FROM TYPE WORD

l 298
el

INSERT SOP OR EOP CONTROL WORD AT PAYLOAD
POSITION IDENTIFIED BY TYPE WORD

FIG. 9B

US 6,718,491 Bl

-t

i HOL

s yyg| 40133130 | 344 | -gyuix3

« 3ININ03S qHom.

g Y, y, ot

561 €61

-t

f— Y

)

(g\ |

\& |

] %2018 ‘N30 u31g9

< AJW ool | -INVHIS

cv 1| 30

119-¥9

¢m—\\

U.S. Patent

1IN

Nm_\\

4dS

4300930
JNVH4

_m—\\

JNvdd

US 6,718,491 Bl

Sheet 14 of 14

Apr. 6, 2004

U.S. Patent

eV
savno d

9t

XNN

STA

NNm\

0€E
c26 — 4300930 ~)
QHOM 3dAL TN
p1E 4 W yEE £EE
9g€ [B
N
wm/m 8
- 9eg 4318 | ee
ge | 3009 / 4300930 ¥9 | -WVHIS Jmuooomo
. -10 Qe e y, el JINVHS
218 avOTAVd 13TVHVd
- L b
] e’ |\ “Lave | T
LEE
¢Nm\\ Y,
1Z€

114

7 JNVHA

99

ONm\

US 6,718,491 B1

1

CODING METHOD AND CODER FOR
CODING PACKETIZED SERIAL DATA WITH
LOW OVERHEAD

FIELD OF THE INVENTION

The invention relates to coding packetized data for serial
transmission, and, in particular, to coding packetized data
with an overhead sufficiently low to enable serial transmis-
sion through an Ethernet local area network with a bit rate
of 10 gigabits/second (Gb/s) using an OC192 SONET laser
operating at 10.3 Gb/s.

BACKGROUND OF THE INVENTION

For several decades now, integrated circuit and laser
technologies have doubled in performance approximately
every 18 months. These technologies have been used to
support a rapidly-growing demand for global communica-
tions capacity. This demand is currently growing much
faster than the underlying rate of improvement of the
supporting technologies. As an example, communication
traffic through the Internet has recently been doubling every
nine months. The demand for additional current bandwidth
is severely stressing the capabilities of current electronic and
optical technologies.

In particular, the Ethernet local area network standard has
progressively increased in speed by factors of ten, starting at
10 megabit per second (Mb/s) in 1982. Proposals for a 10
gigabit/second (Gb/s) Ethernet standard were made in 1999.
The most recently adopted Ethernet standard used a 8b/10b
line code described by A. X. Widmer and P. A. Franaszek in
A DC-Balanced, Partitioned-Block, 8b/10b Transmission
Code, 27 IBM J. REs. AND DEv., (1983 September) for
transmitting serial data at 1 Gb/s. In 8b/10b line code, each
eight-bit input word is represented by a ten-bit code that is
transmitted on the data link. In exchange for this 25%
overhead, 8b/10b coding provides DC balance, and a guar-
anteed transition density. The ten-bit code additionally has
the ability to represent an assortment of control words used
for signalling and framing.

Re-using 8b/10b coding for sending information at 10
Gb/s was considered in the proposed 10 Gb/s Ethernet
standard. However, using this technique would result in
having to transmit at a baud rate of 12.5 Gbaud, i.e., 12.5
Gb/s.

With currently-available laser fabrication technology,
manufacturing a laser capable of modulation at 12.5 Gb/s at
a modest price is considered to be quite difficult. However,
laser systems currently exist for use in systems conforming
to the OC-192 SONET telecommunications standard. Such
system operate at signalling rates of 9.95328 Gb/s. However,
these commercially-available lasers do not have enough
performance margin to run at more than 25% faster than
their design speed.

One way to enable the lasers designed for use in SONET
telecommunications systems to be used in the proposed 10
Gb/s Ethernet standard would be to design a simple and
robust coding scheme with a lower overhead than 8b/10b
line code. In principle, this goal can be achieved using a
block code in which words of M bits are represented by an
N-bit code and in which the ratio of N:M is less than 10:8.

A potential coding scheme having a lower overhead than
8b/10b line code is that used in the SONET telecommuni-
cations standard. The SONET coding scheme assures DC
balance by using a scrambling system, and has an overhead

10

15

20

25

30

35

40

45

50

55

60

65

2

of about 3%. However, the scrambling system used in the
SONET coding scheme uses two layers of polynomial
scrambling to achieve an adequate level of protection. This
two-layer scheme is complex to implement. Moreover, the
SONET coding scheme has a complex framing protocol that
is difficult to implement at low cost. The SONET coding
scheme would also have to be modified to add an extra level
of encoding to support Ethernet packet delimiting. Such an
extra level of coding would probably increase the overhead
of the SONET coding to 7% or more. In addition, it is
thought that the networking community would find the
wholesale adoption of a telecommunications standard to be
unpalatable. The performance and political difficulties just
described would make it difficult for a standard based on the
SONET coding scheme to be adopted as a new Ethernet
standard.

Another potential coding scheme having a lower overhead
than 8b/10b line code is that known as CIMT. This coding
scheme is described in U.S. Pat. No. 5,022,051 of Crandall
etal. and U.S. Pat. No. 5,438,621 of Hornak et al. The CIMT
code is an (M)b/(M+4)b code that can be configured have a
lower overhead than 8b/10b line code by making the value
of M sufficiently large. However, for large values of M, the
CIMT code is difficult to implement due to the need to
compute the DC balance of an incoming block of M bits, and
the need to compute a running DC balance of the transmitted
bits in real time.

Thus, what is required is a method and apparatus for
efficiently coding input data that has a lower overhead than
8b/10b line code and in which the integrated circuit die size
and power dissipation are minimized. The method and
apparatus should meet the performance requirements of the
new Ethernet standard with respect to DC-balance, run-
length control and error detection, and should support the
non-data, control words such as idle, start-of-packet, end-
of-packet, align and error that are required for Ethernet
packet delimiting.

SUMMARY OF THE INVENTION

The invention provides a method for coding a packet of
information words into frames for transmission. In the
method, blocks of the input data are received. The input data
include control words and the packet of information words.
The packet has a start preceded by ones of the control words
and an end followed by others of the control words. The
blocks are smaller than the packet.

A determination of whether the block consists exclusively
of information words is made. When the block consists
exclusively of information words, a master transition having
a first sense is appended to the block to form a frame.

When the block does not consist exclusively of informa-
tion words, the block is condensed to accommodate a TYPE
word, the TYPE word is generated and inserted into the
block and a master transition is appended to the block to
form the frame. The TYPE word has a value that indicates
one of the following structural properties of the block: (a)
the position of the start of the packet in the block, (b) the
position of the end of the packet in the block, and (c) the
block being composed exclusively of control words. The
master transition appended to the block when the block does
not consist exclusively of information words has a second
sense, opposite to the first sense.

The invention also provides a coder for coding blocks of
input data into respective frames for transmission. The input
data include control words and a packet of information
words. The packet has a start preceded by ones of the control

US 6,718,491 B1

3

words and an end followed by others of the control words.
The blocks are smaller than the packet. The coder comprises
a type word generator, a master transition generator, a
payload field generator and a frame assembler.

The type word generator receives the block and generates
a TYPE word for the block. The TYPE word has a value that
indicates one of the following structural properties of the
block: (a) whether the block is composed exclusively of
control words, (b) a position of the start of the packet in the
block, (¢) a position of the end of the packet in the block, and
(d) whether the block is composed exclusively of control
words.

The master transition generator operates in response to the
TYPE word and generates a master transition in a first sense
when the TYPE word indicates that the block is composed
exclusively of information words, and otherwise generates
the master transition in a second sense, opposite to the first
sense.

The payload field generator operates in response to the
TYPE word. The payload field generator adopts the block to
form a payload field of the frame when the TYPE word
indicates that the block is composed exclusively of infor-
mation words. The payload field generator otherwise con-
denses the block and inserts the TYPE word into the block
to form the payload field.

The frame assembler appends the master transition to the
payload field to form the frame.

The coder and coding method according to the invention
have a very low overhead when implemented as a 64b/66b
code (3.125%). The overhead is substantially lower than
8b/10b (25%). This low overhead enables the coder and
coding method according to the invention to transmit Eth-
ernet data at a bit rate of 10.0 Gb/s using existing lasers
designed for use in SONET OC-192 transmitters. Thus, a 10
Gb/s Ethernet standard based on the coder and coding
method according to the invention can be adopted now,
rather than having to wait for lasers capable of modulation
at 12.5 Gbaud to be developed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing an example of a 10
Gb/s Ethernet interface including a coder according to the
invention.

FIG. 2 schematically shows exemplary quads of the input
data received by the coder according to the invention.

FIGS. 3A-3D show the twelve possible types of blocks
that can be received by the coder according to the invention.

FIGS. 4A—4C show the basic structure and the two kinds
of frame that the coder generates from a block of input data.

FIG. 5A is a flow chart showing a first embodiment of a
coding method according to the invention.

FIG. 5B is a flow chart showing an example of the
processing performed in process 205 of the method shown
in FIG. 5A.

FIG. 6 is a flow chart showing a second, quad-based
embodiment of a coding method according to the invention.

FIGS. 7A-7L show specific examples of the frames
generated from each of the twelve block types shown in
FIGS. 3A-3D, including the master transition and the TYPE
word, where used.

FIG. 8A is a block diagram showing a first embodiment
of a coder according to the invention.

FIG. 8B is a block diagram showing a second, quad-based
embodiment of a coder according to the invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 9A is a flow chart showing an example of a decoding
method for decoding the frames generated by the coding
method and coder according to the invention.

FIG. 9B is a flow chart showing an example of the
processing performed in process 276 of the method shown
in FIG. 9A.

FIG. 10A is a block diagram showing a first embodiment
of a decoder for decoding the frames generated by the
coding method and coder according to the invention.

FIG. 10B is a block diagram showing a second embodi-
ment of a decoder for decoding the frames generated by the
coding method and coder according to the invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a block diagram showing an example of a 10
Gb/s Ethernet interface 10 including the physical medium
dependent module (PMD) 30 that includes the encoder 100
according to the invention. The interface 10 is composed of
the medium access controller (MAC) 12, the physical code
layer/physical medium attachment module (PCS/PMA) 14
and the PMD 30. The MAC sends data including user data
received from the host system (not shown) to the PCS/PMA
via the 37-conductor XGMII bus 16. The MAC additionally
receives data that include user data from the PCS/PMA via
the 37-conductor XGMII bus 17 for supply to the host
system.

The PCS/PMA 14 sends a coded serial bitstream, to be
described below, to the PMD 30 via the 4-lane XAUI bus 18
and receives a coded serial bitstream from the PMD via the
4-lane XAUI bus 19.

The physical medium dependent module (PMD) 30
includes the transmission path 20 and the reception path 22.
The transmission path 20 is composed of a serial arrange-
ment of the 4x8b/10b decoder 32, the encoder 100 according
to the invention and the multiplexer 34. The input of the
4x8b/10b decoder is connected to one output of the PCS/
PMA 14 by the XAUI bus 18. The output of the 4x8b/10b
decoder is connected to the input of the encoder by the
37-conductor pseudo-XGMII bus 42.

The output of the encoder 100 is connected to the input of
the multiplexer 34 by the bus 44. In one embodiment, the
bus 44 is 66 conductors wide, but the encoder and the
multiplexer may be configured to use a bus that is substan-
tially narrower than this. The output of the multiplexer is a
serial bitstream that is fed to the Ethernet medium 40.

The reception path 22 is composed of a serial arrangement
of the demultiplexer 36, the decoder 120 and the 4x8b/10b
encoder 38. The demultiplexer receives a serial bitstream
from the Ethernet medium 40.

The output of the demultiplexer 36 is connected to the
input of the decoder 120 by the bus 45. In one embodiment,
the bus 45 is 66 conductors wide, but the demultiplexer and
the decoder may be configured to use a bus substantially
narrower than this. The output of the decoder is connected
to the input of the 4x8b/10b encoder by the 37-conductor
pseudo-XGMII bus 43.

The output of the 4x8b/10b encoder is connected to one
input of the PCS/PMA 14 by the XAUI bus 19.

In the Ethernet interface 10, the MAC 12 receives user
data from, and provides user data to, a host system (not
shown). The MAC takes any number of words of user data
between 64 and 1500, adds 22 words of address and other
data to the front of the user data and four words of a CRC-32
checksum to the end of the user data to form a packet. In this
disclosure, the contents of a packet will be called informa-
tion words.

US 6,718,491 B1

5

The MAC additionally generates a Start of Packet (SOP)
control word S that it adds to the start of each packet to mark
the start of the packet. The MAC additionally generates an
End of Packet (EOP) control word T that it adds to the end
of each packet to mark the end of the packet. The MAC also
generates additional control words and inserts them between
consecutive packets to generate a continuous stream of
words for transmission to the PCS/PMA 14. The continuous
stream is required to maintain receiver phase alignment. The
additional control words include Idle even_not busy K,
Idle_even_ busy Kb, Idle_odd_not_busy R, Idle__odd__
busy Rb, Align A and Error E. This disclosure uses the letter
Z as a generic term to indicate any one of the control words.

The MAC 12 feeds the continuous stream of words to the
PCS/PMA 14 via the XGMII bus 16. Of the 37 conductors
in each of the XGMII buses 16 and 17, 32 are allocated to
four, parallel, eight-bit words; four are allocated to control
word flags, each of which indicates whether a respective one
of the four words is an information word or a control word;
and one is allocated to a clock signal. A set of four eight-bit
words transported in parallel by the XGMII busses 16 and 17
and by the pseudo-XGMII busses 42 and 43 will be referred
to as a quad.

In addition, the MAC 12 receives from the PCS/PMA 14
via the XGMII bus 17 a continuous stream of quads. The
quads are composed of information words arranged in
packets and code words interspersed between consecutive
packets, as just described. The start and end of each packet
are marked with an SOP and an EOP control word, respec-
tively. The MAC extracts the packet of information words
from the stream of quads received from the PCS/PMA using
the control word flags received in parallel with the quads to
indicate the information words. The MAC also checks the
validity of each packet using the CRC-32 checksum that
constitutes the last four words of the packet. The MAC then
extracts the user data from the packet, and forwards the user
data to the host system (not shown).

The PCS/PMA 14 receives the continuous stream of
quads from the MAC 12. The MAC and the PCS/PMA are
elements of conventional Ethernet system. Consequently,
the PCS/PMA module applies 8b/10b line code to each word
in the quads received from the MAC. Each word is coded in
response to its respective control word flag so that informa-
tion words and control words having the same eight-bit code
are represented by different ten-bit codes. The PCS/PMA
also serializes the 10-bit line code words and feeds them to
the input of the PMD 30 via the XAUI bus 18. The XAUI
bus is standardized for 10 Gb/s Ethernet and is composed of
four parallel conductors, called lanes, each of which carries
serial 10-bit line code words at a bit rate of 3.125 Gb/s. Thus,
the four conductors constituting the XAUI bus collectively
transfer the serial 10-bit line code words to the PMD 30 at
an effective bit rate of 12.5 Gb/s.

The XAUI busses 18 and 19 use four parallel conductors
to achieve a total bit rate of 12.5 Gb/s because 3.125 Gb/s
represents the fastest rate at which data can be reliably
transmitted over the conductors of a printed circuit board
using present-day technology.

The PCS/PMA 14 also receives four serial bitstreams
from the PMD 30 via the XAUI bus 19. The PCS/PMA
parallelizes the bitstreams, decodes the 8b/10b coding of the
10-bit line code words constituting the bitstream, and feeds
the resulting continuous stream of quads composed of
information words and control words to the MAC 12 via the
XGMII bus 17. The PCS/PMA additionally feeds a control
word flag for each of the words constituting the quads to the
MAC via the XGMII bus.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the transmission path 20 of the PMD 30, the 4x8b/10b
decoder 32 is connected to the XAUI bus 18 to receive
incoming serial 10-bit line code words at a bit rate of
4x3.125 Gb/s. The 4x8b/10b decoder decodes the 8b/10b
coding of the 10-bit line code words to recover respective
8-bit words, and generates, for each word, a word type bit
that indicates whether the word is an information word or a
control word. The 4x8b/10b decoder feeds quads of the 8-bit
words and their respective control word flags to the encoder
100 via the pseudo-XGMII bus 42. The pseudo-XGMII bus
has the same structure as the XGMII bus 16, but is called
pseudo-XGMII in this disclosure to indicate that this bus
does not form part of the proposed 10 Gb/s Ethernet stan-
dard. The pseudo-XGMII bus is composed of 37 conductors.
Thirty-two of the conductors are allocated to the quads, four
of the conductors are allocated to the control word flags for
the quads, and one conductor is allocated to a clock signal.

It might appear that a substantial simplification could be
achieve by omitting the PCS/PMA 14, the XAUI busses 18
and 19, the 4x8b/10b decoder 32 the 4x8b/10b encoder 38
and the pseudo-XGMII busses 42 and 42, and simply
connecting the encoder 100 and the decoder 120 to the MAC
12 via the XGMII busses 16 and 17. However, the PCS/
PMA imposes the rule, described below, that the start-of-
packet (SOP) control word can appear only in lane 0 of the
XAUI bus, and, hence of the pseudo-XGMII bus. Without
this rule, the number of block types would exceed the
number that can be represented by a set of eight-bit TYPE
words having a mutual Hamming distance of four bits.
Moreover, the maximum transmission distance of current
embodiments of the XGMII bus is of the order of 100 mm,
whereas that of the XAUI bus is of the order of 1 m. Thus,
the above-described simplification can be made, but only if
the MAC 12 is re-configured to locate the SOP control word
exclusively on the lane of the XGMII bus equivalent to lane
0 of the XAUI bus, and the length of the XGMII bus is less
than the maximum transmission distance of such bus.

The encoder 100 receives the quads from the pseudo-
XGMII bus 42 as input data, encodes consecutive pairs of
the quads to generate respective 66-bit packets, as will be
described in more detail below, and feeds the packets to the
multiplexer 34 via the bus 44.

The multiplexer receives the 66-bit packets, serializes
them and transmits them to the Ethernet medium 40 at a bit
rate of 10 Gb/s. Typical transmission ranges are 5 m using
RG-174 coaxial cable, 10 m using 5 mm coaxial cable and
40 km using optical fibers.

In the reception path 22 of the PMD 30, the demultiplexer
separates the serial data received at a bit rate of 10 Gb/s from
the Ethernet medium 40 into 66-bit packets, and feeds the
packets to the decoder 120 via the bus 45. The decoder
decodes the 66-bit packets to generate two consecutive
quads of eight-bit words and a control word flag for each
word. The decoder transfers the quads and their respective
control word flags in parallel to the 4x8b/10b encoder 38 via
the pseudo-XGMII bus 43.

The 4x8b/10b encoder 38 applies 8b/10b encoding to the
quads received via the pseudo-XGMII bus 43, operating in
response to the control word flag for each word constituting
the quads. The 4x8b/10b encoder transfers the resulting
10-bit line code words via the XAUI bus 19 to the PCS/PMA
module 14 at a bit rate of 12.5 Gb/s. The 10-bit line code
words are processed by the PCS/PMA and the MAC 12 to
provide the received user data to the host system (not
shown), as described above.

The 64b/66b coding applied by the encoder 100 according
to the invention will now be described with reference to
FIGS. 2, 3A-3D and 4A—4C.

US 6,718,491 B1

7

FIG. 2 schematically shows exemplary quads of the input
data received by the encoder 100 via the four lanes of the
pseudo-XGMII bus 42. The input data include the exem-
plary packet 130 composed of information words D. To
simplify the drawing, the number of information words in
the packet 130 is substantially fewer than the minimum
number of information words in a standard Ethernet packet.

Prior to the start of the packet 130, the encoder 100
receives control words on all four input lanes of the pseudo-
XGMII bus 42. The control words in the four lanes alternate
between K and R. A set of alignment characters A that can
be used to synchronize the lanes is also shown. The start of
the packet 130 is indicated by the SOP control word S,
shown at 131. The SOP control word always appears in lane
0 and never appears in any other lane. If the SOP control
word appears in a lane other than lane 0, this indicates an
error and the packet is filled with error codes E.

The information words D constituting the packet 130 are
then consecutively received, followed by the EOP control
word T, shown at 132. The EOP control word can appear in
any of the lanes of the pseudo-XGMII bus 42. The lane in
which the EOP control word appears depends on the number
of information words in the packet. The packet can be
composed of any number of information words between 64
and 1500. The minimum number of control words between
consecutive packets is 12. Following the EOP control word
131, the encoder 100 receives control words that alternate
between K and R via all four lanes of the pseudo-XGMII
bus. The control words continue until the SOP control word
(not shown) indicating the start of the next packet.

The encoder 100 according to the invention applies 64b/
66b encoding to blocks composed of two quads of the input
data consecutively received from the pseudo-XGMII bus 42,
i.e., the 64b/66b coding is applied to a total of 64 received
bits. Thus, the 64b/66b coding uses 66 bits to represent the
64 received bits. The 64b/66b coding adds a master transi-
tion composed of two bits to the start of the block to form
a frame. The master transition serves both as a reference for
frame synchronization and as a flag that indicates when the
frame is composed exclusively of information words. The
64b/66b coding has a coding efficiency of 64/66, or an
overhead of 3.125%. The 64b/66b coding results in a trans-
mitted bit rate that is within 4% of the specified bit rate of
existing lasers designed for use in SONET transmitters. The
inventors believe that this transmitted bit rate is within the
normal manufacturing performance window for such exist-
ing lasers.

Since each word received from the pseudo-XGMII bus 42
can be either a control word or an information word, as
indicated by the word’s respective control word flag, also
received from the pseudo-XGMII bus, a fully-general code
would need to transmit the control word flag for each word
to tell the receiver what type of word is being received. The
maximum efficiency of such a code would be 8/9, 0r a 12.5%
overhead. The 64b/66b coding achieves a substantially
lower overhead than this by taking advantage of features of
the XAUI interface and the Ethernet packet structure that
reduce the number of possible ways in which information
words and control words can be arranged in the input data.

First, each packet of information words received by the
encoder 100 is composed of at least 64 words, always starts
with the SOP control word S and always ends with the EOP
control word T, and consecutive packets are separated by at
least 12 control words. This means that when blocks of eight
words (64 bits) of the input data are coded, each block can
contain information words exclusively, control words

10

15

20

30

35

40

50

55

60

65

8

exclusively, a single transition from control words to infor-
mation words or a single transition from information words
to control words. As noted above, the master transition that
constitutes the first two bits of the frame operates as a flag
to indicate when the frame is composed exclusively of
information words. This means that, instead of including
eight control word flags in each frame to indicate whether
the eight words constituting the frame are each an informa-
tion word or a control word, this number of bits can be used
to represent a TYPE word that is included in all frames that
are not composed exclusively of information words. Differ-
ent values of the TYPE word indicate one of the following
structural properties of the block: 1) whether the block from
which the frame is derived is composed exclusively of
control words, 2) the position of the start of a packet in the
block from which the frame was derived and 3) the position
of the end of a packet in the block from which the frame was
derived. Since the number of states represented by the
eight-bit TYPE word is relatively small, TYPE words hav-
ing a large mutual Hamming distance can be chosen. For
example, the TYPE words can be chosen so that more than
three bit errors are required to convert one TYPE word to
another.

Second, as noted above, XAUI semantics guarantee that
the SOP control word S appears in lane 0 exclusively. This
reduces the number of ways in which the packet start can
appear in the frame to two, which further reduces the total
number of ways in which the start of the packet or the end
of the packet can appear in the frame.

Third, the set of control words is sufficiently small (K, Kb,
R,Rb, S, T, A, E, .. .) to allow the control words to be coded
using fewer than eight bits, and to be coded by a set of codes
having a large mutual Hamming distance. The bits saved by
coding the control words using fewer than eight bits can then
be used to condense the block to enable the frame to
accommodate the above-described TYPE word. The codes
are chosen to enable the control word coding to be highly
resistant to bit errors.

FIGS. 3A-3D show the twelve possible types of blocks
that the encoder 100 can receive from the pseudo-XGMII
bus 42. FIG. 3A shows a block generated from two con-
secutive quads located in the middle of the packet, where
both quads consist exclusively of information words. The
block composed of two consecutive quads of exclusively
information words is called a Type 1 block.

FIG. 3B shows the one block Type that includes two
consecutive quads located in the middle of the gap between
two consecutive packets, where both quads consist exclu-
sively of control words. The block composed of two con-
secutive quads of exclusively information words is called a
Type 2 block.

FIG. 3C shows the two different block Types in which the
start of the packet appears. The start of the packet is
indicated by SOP control word S. Because the SOP control
word can only appear in lane 0 of the pseudo-XGMII bus,
the SOP control word can appear in only two possible
locations in the block. The block in which the SOP control
word appears in the even-numbered quad is called a Type 3
block, and that in which the SOP control word appears in the
odd-numbered quad is called a Type 4 block.

FIG. 3D shows the eight different block Types in which
the end of the packet appears. The end of the packet is
indicated by the EOP control word T. Because the EOP
control word can appear in any one of the four lanes of the
pseudo-XGMII bus, the EOP control word can appear in any
location in the block. The blocks in which the EOP control

US 6,718,491 B1

9

word appears as word 1 through 8 of the block (see FIG. 7A)
are called Type 5 through Type 12 blocks, respectively.

The 12 different types of blocks are indicated by a code
that uses a combination of the master transition and the
TYPE word. The 12 types of blocks are divided into two
different categories, namely, blocks composed exclusively
of information words, i.c., the Type 1 block shown in FIG.
3A, and blocks that include at least one control word, i.e., the
Type 2-12 blocks shown in FIGS. 3B-3D.

FIG. 4A shows the basic structure of the frame 150 that
the encoder 100 generates from a block of input data. The
frame is composed of the two-bit sync. field 151 followed by
the 64-bit payload field 152. The sync. field accommodates
the two-bit master transition. The words accommodated by
the payload field are scrambled with a long-period, self-
synchronous scrambler to maintain the statistical DC bal-
ance of the transmitted bitstream, as will be described in
more detail below.

The encoder 100 generates two different kinds of frame
having the basic structure shown in FIG. 4A, but differing in
the structure of their payload fields. The structure of the
payload field depends on whether or not the block from
which the frame is generated is a Type 1 block composed
exclusively of information words. The structure of the
payload field is indicated by the master transition stored in
the sync. field. FIG. 4B shows the structure of the frame 153
generated when the block is a Type 1 block. In this, the
master transition in the sync field 151 is 01, and the payload
field 152 is composed of the eight information words
constituting the block, i.e., 64 bits.

FIG. 4C shows the structure of the frame 156 generated
when the block is a Type 2 through Type 12 block that
includes at least one control word. In this, the master
transition in the sync. field 151 is 10, and the payload field
152 is composed of the 8-bit sub-field 157 and the 56-bit
sub-field 158. The eight-bit sub-field 157 is occupied by the
TYPE word and the 56-bit sub-field 158 is occupied by a
condensed version of the block. In particular, all information
words included in the block are included unchanged in the
sub-field 158. The 56-bit sub-field 158 can accommodate up
to seven information words, the maximum number of infor-
mation words in a block that includes at least one control
word. Moreover, the control words S and T, if they appear
in the block, are discarded and are not transferred to the
sub-field 158. Finally, all remaining control words in the
block are re-coded using fewer than eight bits and the
re-coded control words are included in the sub-field 158. In
the preferred embodiment, the remaining control words are
re-coded using seven-bit codes chosen to have a mutual
Hamming distance of four bits.

The control words S and T can be omitted from the
sub-field 158 because position of the start of the packet or
the end of the packet in the frame is indicated by the TYPE
word included in the sub-field 157. Omitting the control
words S and T allows the payload field 158 to accommodate
the TYPE word and all seven information words in full when
the block is composed of seven information words and either
the SOP control word S or the EOP control word T, as in the
Type 3 block shown in FIG. 3C and the Type 12 block shown
in FIG. 3D. Re-coding the remaining control words as 7-bit
words enables the payload field 158 to accommodate the
TYPE word and all eight control words when the block is
composed exclusively of control words, as in the Type 2
block shown in FIG. 3B. All other combinations of infor-
mation words and control words are composed of fewer than
56 bits after the S and T control words have been removed
and the remaining control words have been re-coded using
fewer bits.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 5A is a flow chart showing a first embodiment 200
of a method according to the invention for applying 64b/66b
coding to input data that include a packet of information
data. The processing performed in process 205 of the
method will be described in more detail below with refer-
ence to FIG. 5B.

The method starts at process 202. In process 203, blocks
of the input data are received. The input data include the
above-mentioned control words in addition to the packet of
information words. The control words precede and follow
the packet of information words. The blocks are smaller than
the packet. In the preferred embodiment, each block is
composed of two successive quads of four parallel words
received from the pseudo-XGMII bus 42.

In process 204, a test is performed on a block of the input
data to determine whether the block is composed exclusively
of information words. In the preferred embodiment, this test
can be performed simply by examining the control word
flags for the eight words that constitute the block. The
control word flags are received together with the words that
constitute the block via the pseudo-XGMII bus 42.
Alternatively, the test can be performed by testing the quads
as they are received, and deriving the test result for the block
from the test results for the quads that constitute the block,
as will be described in more detail below with reference to
FIG. 6.

When the test result is NO, execution advances to process
205, which will be described below. When the test result is
YES, execution advances to process 206, where the block is
scrambled.

Execution then advances to process 207, where a frame is
formed by preceding the scrambled block with a master
transition in the first sense. In the preferred embodiment, the
master transition in the first sense is provided by the two bits
01.

Execution then advances to process 208, where the frame
is transmitted, and to process 209, where a test is performed
to determine whether all the blocks of the input data have
been processed. When the test result is YES, execution
advance to process 210, where it ends. When the test result
is NO, execution returns to process 204 via process 211 so
that the next block can be processed.

When the test result in process 204 is NO, this indicates
that the block includes at least one control word. Execution
advances to process 205, where a TYPE word that identifies
the structural properties of the block is generated, the block
is condensed and the TYPE word is inserted into the block.
The TYPE word indicates one of the following structural
properties of the block: 1) whether the block is composed
exclusively of control words, 2) the position in the block of
the start of the frame and 3) the position of the end of the
frame the block. Block Types are described in detail above
with reference to FIGS. 3A-3D. The processing performed
in process 205 will be described in more detail below with
reference to FIG. 5B.

Execution then advances to process 212 where the block
is scrambled.

Execution then advances to process 213, where a frame is
formed by preceding the scrambled block with a master
transition in a second sense, opposite to the first sense. In the
preferred embodiment, the master transition in the second
sense is provided by the two bits 10.

Execution then advances to process 208, where the frame
is transmitted, as described above.

The block is described above as being subject to scram-
bling in processes 207 and 213. In general-purpose data

US 6,718,491 B1

11

transportation applications, the block has to be scrambled to
ensure that the receiver can synchronize to the master
transitions, and decode the packets. However, in data trans-
portation applications in which random data are transported,
the scrambling processes 207 and 213 can be omitted.
Examples of random data include digital audio signals and
compressed data.

FIG. 5B shows an example of the processing performed
in process 205. In this process, the block is condensed and
a TYPE word indicating the structural properties of the
block is inserted into the block. The structure includes the
position of the start or the end of the packet in the block, and
whether the block is composed exclusively of control words.

Execution starts in process 220. In process 221, a test is
performed to determine whether the block includes the SOP
control word S that indicates that the packet starts in the
block. When the test result is NO, execution advances to
process 222, which will be described below. When the test
result is YES, execution advances to process 223, where a
test is performed to determine whether the SOP control word
appears in the first quad constituting the block. Each block
processed by the encoder 100 is composed of two
consecutively-received quads.

When the test result generated by process 223 is NO,
execution advances to process 224, where a TYPE word
indicating that the block is a Type 4 block is generated. A
Type 4 block is one in which the SOP control word appears
in the second quad. Block types are described in detail above
with reference to FIGS. 3A-3D. Execution then advances to
process 226, which will be described below. When the test
result generated in process 223 is YES, execution advances
to process 225, where a TYPE word indicating that the block
is a Type 3 block is generated. A Type 3 block is one in
which the SOP control word appears in the first quad.

Execution advances from process 224 or process 225 to
process 226, where the block is condensed by removing the
SOP control word from the block. Condensing the block
creates space in the block for the TYPE word generated in
process 224 or process 225 to be inserted into the block in
process 228, to be described below.

Execution then advances to process 227, where the block
is condensed by re-coding any control words in the block
using fewer bits. If either process 226 or process 233 has
previously been executed, the effect of executing process
227 is to compress the block further. Process 233 will be
described below. The purpose of condensing the block is
described above. In the preferred embodiment, the 8-bit
control words are re-coded using fewer bits. The set of
control words is sufficiently small to allow the control words
to be coded using 7-bit codes chosen to have a mutual
Hamming distance of four bits. The re-coding process can
refer to the TYPE word for the block to find the locations of
the control words in the block.

Execution then advances to process 228, where the TYPE
word is inserted at the head of the block. Space to accom-
modate the TYPE word has been created in the block by
executing one or more of processes 226, 227 and 233.
Process 233 is described below.

Execution then advances to process 229, whence it returns
to the main routine.

When the test result in process 221 is NO, execution
advances to process 222, where a test is performed to
determine whether the block includes the EOP control word
T that indicates that the end of the packet appears in the
block. When the test result is NO, execution advances to
process 230, which will be described below. When the test

10

15

20

25

35

40

50

55

60

65

12

result is YES, execution advances to process 231, where the
position of the EOP control word in the block is determined.
As shown in FIG. 3D, any of the eight words in the block can
be the EOP control word.

Execution then advances to process 232, where a TYPE
word is generated in accordance with the position of the
EOP control word in the block. The TYPE word indicates
that the block is one of a Type 5 through Type 12 block. Type
5 through Type 12 blocks are blocks in which the EOP
control word appears in one of the eight word positions in
the block, as described above with reference to FIG. 3D.

Execution then advances to process 233, where the block
is condensed by removing the EOP control word from the
block. The purpose of condensing the block is described
above.

Execution then advances to process 227, where the block
is further condensed by re-coding any control words remain-
ing in the block are re-coded using fewer bits, as described
above.

Actest result of NO in process 222 indicates that the block
is composed exclusively of control words. In this case,
execution advances to process 230 where a TYPE word
indicating that the block is a Type 2 block is generated. A
Type 2 block is a block composed exclusively of control
words.

Execution then advances to process 227, where the block
is condensed by re-coding the control words included in the
block using fewer bits, as described above. In this case, all
eight words in the block are control words and are re-coded.

Note that in the above processing, such information words
as are included in the block remain unchanged.

FIG. 6 is a flow chart showing a second embodiment 250
of a coding method according to the invention for applying
64b/66b coding to input data that include a packet of
information data. This embodiment is quad-based rather
than block-based. The method starts at process 251. In
process 252, a quad of input data is received from the
pseudo-XGMII bus 42 shown in FIG. 1. A control word flag
for each word in the quad is also preferably additionally
received.

In process 253, a test is performed to determine whether
the quad is composed exclusively of information words.
This test can be performed simply by examining the control
word flags of the quad. When the test result is YES,
execution advances to process 254, where a quad-type code
indicating that the quad is composed exclusively of infor-
mation words is appended to the quad. Execution then
advances to process 261, which will be described below.
When the test result is NO, execution advances to process
255.

In process 2585, a test is performed to determine whether
any of the control words in the quad is the end-of-packet
(EOP) control word. When the test result is NO, execution
advances to process 256, which will be described below.
When the test result is YES, execution advances to process
257, where the position of the EOP control word in the quad
is determined, and to process 258, where a quad-type code
is appended to the quad. The quad-type code indicates the
position of the EOP control word in the quad

In process 259, the EOP control word is removed from the
quad. This has the effect of condensing the block of which
the quad is a constituent.

In process 260, any other control words in the quad are
re-coded using fewer bits, as described above. This has the
effect of further condensing the block of which the quad is

US 6,718,491 B1

13

a constituent. Execution then advances to process 261,
which will be described below.

When the test result in process 255 is NO, execution
advances to process 256 where a test is performed to
determine whether any of the control words in the quad is
the start of packet (SOP) control word. When the test result
is NO, execution advances to process 262, where a quad-
type code indicating that the quad is composed exclusively
of control words is appended to the quad. Execution then
advances to process 260, described above, where the control
words are re-coded, and then to process 261, to be described
below.

When the test result in process 256 is YES, execution
advances to process 263, where a quad-type code indicating
that the SOP control appears in lane 0 of the quad is
appended to the quad.

In process 264, the SOP control word is removed from the
quad. This has the effect of condensing the block of which
the quad is a constituent.

Execution then advances to process 260, described above,
where the control words are re-coded, and then to process
261, to be described next.

In process 261, a test is performed to determine whether
the quad just processed is an even-numbered quad. When the
test result is YES, execution returns to process 252 via
process 265 so that the next quad can be received and
processed. In this case, the next quad is the second quad that
constitutes the block from which the frame will be gener-
ated. A test result of NO indicates that both quads that
constitute the block have been received and processed, and
execution advances to process 266.

In process 266, the quad-type codes appended to the two
quads are examined to determine the block Type of the block
that will be generated from the quads, and to generate the
TYPE word for the block. For example, when the quad-type
code of the even-numbered quad indicates that the SOP
control word appears in the quad, and the quad-type code for
the odd-numbered quad indicates that the quad is composed
exclusively of information words, the process 266 deter-
mines that the block is a Type 3 block (see FIG. 3C).

Although TYPE words are allocated only to blocks that
include a control word, the processing 250 can be simplified
by allocating an additional TYPE word to Type 1 blocks, i.e.,
blocks composed exclusively of information words. The
additional TYPE word is used internally by the processing
250, and is never inserted into the block. For example, the
word 00,, can be used as the TYPE word for Type 1 block.

In process 267, a test is performed to determine whether
the block is composed exclusively of information words by
testing whether the block is a Type 1 block. When the test
result is YES, execution advances to process 268, where the
quads are combined to form the block.

In process 269, the block is scrambled, as described
above. This process may be omitted when the information
words are random, as described above.

In process 270, the frame is formed by preceding the
scrambled block with a master transition in the first sense. In
the preferred embodiment, the master transition in the first
sense is provided by the two bits 01.

Execution then advances to process 274, which will be
described below.

When the test result generated in process 267 is NO,
execution advances to process 271, where the quads are
combined to form the block and the TYPE word is inserted.
The TYPE word is inserted at the head of the block. In

10

15

20

25

30

35

40

45

50

55

60

65

14

combining the quads, the information words are shifted to
abut one another and also to abut either the TYPE word or
the end of the block. The coded control words are shifted to
abut one another and also to abut either the end of the block
or the TYPE word (see FIGS. 7A-7L for examples). Any
gap between the information words and the control words is
filled with fill bits.

In process 272, the block is scrambled, as described
above. Again, this process is optional if the information
words are random.

In process 273, the frame is formed by preceding the
scrambled block with a master transition in the second sense.
In the preferred embodiment, the master transition in the
second sense is provided by the two bits 10.

Execution then advances to process 274, which will be
described next.

In process 274, the frame is transmitted.

In process 2785, a test is performed to determine whether
all the quads of the input data have been processed. When
the test result is YES, execution advances to process 276,
where it ends. When the test result is NO, execution returns
to process 252 via process 265, described above, so that the
next quad, an even-numbered quad, can be processed.

FIGS. 7A-7L show specific examples of the frames
generated from each of the twelve block types shown in
FIGS. 3A-3D, including the master transition and the TYPE
word, where used. FIG. 7A shows the frame 153 generated
from the Type 1 block shown in FIG. 3A. This block is
composed exclusively of information words. In the frame
153, the sync field 151 is filled with the two-bit master
transition 01 and the payload field 152 is filled with the eight
information words located in the eight positions 0 through 7
in the block 160, as shown. Each of the information words
in the payload field is labelled with the letter D, a number
and the numeral 8. The letter D indicates an information
word, the number indicates the location of the information
word in the block 162 and the numeral 8 indicates that the
information word is composed of eight bits.

FIG. 7B shows a frame generated from the Type 2 block
shown in FIG. 3B. FIGS. 7C and 7D respectively show
frames generated from the Type 3 and Type 4 blocks shown
in FIG. 3C. FIGS. 7E-TL respectively show frames gener-
ated from the Type 5 through 12 blocks shown in FIG. 3D.
As an example, FIG. 7D shows the frame 156 generated
from the Type 4 block shown in FIG. 3C. The Type 4 block
is composed partly of control words, i.e., the SOP control
word S and the unspecified control words Z, and partly of
information words D. In the frame 156, the sync. field 151
is occupied by the two-bit master transition 10 and, in the
payload field 152, the sub-field 157 is occupied by the 8-bit
TYPE word, in this example, the hexadecimal number 33,,.
The TYPE word indicates that the frame is generated from
a Type 4 block in which the start of a packet appears in the
odd-numbered quad constituting the block. The sub-field
158 of the payload field is occupied by three coded control
words Z and three eight-bit information words D.

Each of the data elements in the sub-field 158 is labelled
with the letter D or Z, a number and the numeral 7 or 8. The
letter D indicates an information word, the letter Z indicates
a control word, the number indicates the location of the
information word or control word in the block using the
convention described above with reference to FIG. 7A, the
numeral 7 or 8 indicates the number of bits in the data
element, i.e., seven bits for each coded control word and
eight bits for each information word. As noted above, the
SOP control word S is discarded and is not transferred to the

US 6,718,491 B1

15
sub-field 158. The function of the SOP control word indi-
cating that the packet starts at position 4 of the block is
provided by the TYPE code 33, instead.

The three coded control words Z coded as 7-bit words and
three eight-bit information words D do not fully occupy the
sub-field 158 of the frame 156. The unoccupied region 164
of the sub-field is filled with suitable idle bits. Alternatively,
functions can be assigned to the bits used to fill the unoc-
cupied portions of the sub-field 158.

The TYPE words illustrated in FIGS. 7B-7L are chosen
to have a mutual Hamming distance of four bits to ensure
that the start and the end of the packet are reliably identified.
The TYPE words are additionally chosen to be easy to
generate and to test. The set of chosen TYPE words is an
eleven-element sub-set of a 16-clement set generated as
follows: the first four bits of each successive element in the
set increments from O to 15 in binary. The second four bits
of each element provide the minimum Hamming distance
protection and are either 1) a duplication of the first four bits
when the parity of the first four bits is even, or 2) the
complement of the first four bits when the parity of the first
four bits is odd. The 16-element set is optimum in that it
provides for a very simple implementation with low gate
delay and latency.

At first sight, the two bits constituting the master transi-
tion would appear to suffer from the disadvantage that a
two-bit error can convert the kind of frame defined by the
master transition from a frame that lacks the TYPE word
(FIG. 4B) to a frame that includes the TYPE word (FIG. 4C).
This is not robust enough to meet Ethernet requirements.
However, master transition errors as large as four bits can be
detected in the decoder 120 by monitoring the sequencing of
the kinds of frame. As noted above, each frame can be one
of four different kinds, namely, one composed exclusively
information words D (Type 1), one that includes the start of
packet S (Types 3 and 4), one that includes the end of packet
T (Types 5-12) and one composed exclusively control words
Z (Type 2). In normal operation, the four different frame
types are generated in a predetermined order, namely: S,
D,...,D,T,Z,...Z,S$,D,...,D,T,Z, ..., Zetc, and
must be received in the same predetermined order. By
monitoring the order of the kinds of frame received and
flagging violations of the predetermined order by adding the
error control word E to the decoded data, the MAC 12 can
void damaged packets.

FIG. 8A is a block diagram showing a first embodiment
of the encoder 100 according to the invention. The encoder
is composed of the type word generator 181, the payload
field generator 182, the 64-bit scrambler 183, the master
transition generator 184 and the frame assembler 185.

In the encoder 100, the type word generator 181 and the
payload field generator 182 are connected to receive blocks
of input data from the 4x8b/10b decoder 32 via the pseudo-
XGMII bus 42 (FIG. 1). The input data are composed of
control words and a packet of information words. The packet
is preceded and followed by the control words. In the
preferred embodiment, the blocks are eight words, i.e., 64
bits, long and are smaller than the smallest size of the packet.
The blocks are also smaller than the number of control
words between consecutive packets. The encoder processes
the input data block-by-block to generate respective frames
for transmission.

The type word generator 181 generates a TYPE word
whose value indicates one of the following mutually-
exclusive structural properties of the block: 1) whether the
block is composed exclusively of control words, 2) a posi-

10

15

20

25

35

40

45

50

55

60

65

16

tion of the start of the packet in the block and 3) a position
of the end of the packet in the block and 4) whether the block
is composed exclusively of information words. The type
word generator feeds the TYPE word to the payload field
generator 182 and the master transition generator 184. The
value of the TYPE word that indicates whether the block is
composed exclusively of information words may take the
form of a flag bit fed to the master transition generator 184
and, optionally, to the payload field generator 182.

The payload field generator 182 operates in response to
the TYPE word. When the TYPE word indicates that the
block is composed exclusively of information words, the
payload field generator adopts the block to form a payload
field. Otherwise, when the TYPE word indicates that the
block is not composed exclusively of information words, the
payload field generator condenses the block and inserts the
TYPE word into the block to form the payload field.

The payload field generator 182 condenses the block by
performing one or both of the following operations: 1)
removing any start-of-packet control word or an end-of-
packet control word from the block, and 2) re-coding any
other control words in the block using fewer bits. In the
preferred embodiment, the control words are re-coded using
seven-bit codes having a mutual Hamming distance of four
bits. Whether the payload field generator simply adopts the
block as the payload field, or processes the block further
before forming the payload field may be determined by the
above-mentioned flag bit in lieu of the full TYPE word. The
TYPE word indicates the location in the block of the
start-of-packet control word or the end-of-packet control
word (if any) and the locations in the block of the other
control words (if any).

The payload field generator 182 feeds the payload field PF
generated from the block to the 64-bit scrambler 183.

The 64-bit scrambler 183 is a self-synchronous scrambler
based on a high-order polynomial and will be described in
more detail below. The scrambler may be omitted in
embodiments of the encoder 100 designed exclusively for
transmitting input data that is already random, as described
above. The scrambler feeds the scrambled payload field SPF
it generates from the payload field PF to the frame assembler
185.

The master transition generator 184 operates in response
to the TYPE word, or, alternatively, to the flag bit described
above, and generates a master transition. The master tran-
sition generator generates the master transition in a first
sense when the TYPE word, or flag bit, indicates that the
block is composed exclusively of information words.
Otherwise, when the TYPE word, or flag bit, indicates that
the block is not composed exclusively of information words,
the master transition generator generates the master transi-
tion in a second sense, opposite to the first sense. In the
preferred embodiment, the master transition in the first sense
is 01, and the master transition in the second sense is 10.
Transitions opposite to those shown could alternatively be
used. The master transition generator feeds the master
transition MT to the frame assembler 185.

The frame assembler 185 receives the scrambled payload
field from the 64-bit scrambler 183 and the master transition
from the master transition generator 184 and appends the
master transition to the scrambled payload field to form the
frame for transmission. The frame assembler preferably
locates the master transition before the payload field, but
could alternatively locate the master transition after the
payload field.

The frame assembler feeds the 66-bit frame to the mul-
tiplexer 34 via the bus 44 (FIG. 1).

US 6,718,491 B1

17

FIG. 8B is a block diagram showing a second embodi-
ment of the encoder 100 according to the invention. In this
embodiment, the processing is quad based. The encoder is
composed of the STZ pre-coder 301, the block generator 302
composed of the demultiplexer 303 and the register 304, the
payload field generator 305, the type word generator 306,
the scrambler 307 and the frame assembler 308.

The STZ pre-coder 301 receives quads of words and their
respective control word flags via the pseudo-XGMII bus 42.
The STZ re-coder generates a quad-type code for each quad.
The quad-type code is analogous to the above-described
TYPE word that indicates the block Type of a block, but
pertains to a quad. The quad-type code is a code whose value
indicates one of the following mutually-exclusive structural
properties of the quad: 1) whether the quad is composed
exclusively of information words, 2) whether the quad is
composed exclusively of control words, 3) whether the SOP
control word appears in the quad, and 4) the position in the
quad of the EOP control word (if any). Characteristics 1) and
2) can be detected simply by examining the control word
flags.

For each quad that is not composed exclusively of infor-
mation words, the STZ pre-coder 301 condenses the quad by
re-coding each word, if any, in the quad that is indicated by
its control word flag to be a control word. The codes for
coding the control words are chosen to have a mutual
Hamming distance of four bits. Re-coding the SOP and EOP
control words is optional since these control words are later
discarded by the payload field generator 305. The STZ
pre-coder additionally appends the four control word flags
and the quad-type code to the quad, which may have been
condensed, to form a pre-coded quad, and feeds the pre-
coded quad to the block generator 302 via the 41-bit wide
bus 310.

The block generator 302 receives consecutive pairs of
pre-coded quads from the STZ pre-coder 301 and forms the
blocks of eight words from them. In the block generator, the
de-multiplexer 303 receives the consecutive pairs of pre-
coded quads and switches them alternately to outputs con-
nected to via 41-bit wide busses 311 and 312 to correspond-
ing inputs of the register 304.

The register 304 outputs the pairs of pre-coded quads in
parallel. The pre-coded quads are output in two parts that
effectively split the quads from their respective quad-type
codes and the control word flags. The pair of quads received
by the register form the block BLK that is fed by the 64
bit-wide bus 313 to the frame composer 305. The pair of
quad-type codes and the control words flags corresponding
to the block are fed by the 18-bit wide bus 314 to the type
word generator 306.

The type word generator 306 determines the block Type
of the block BLK from the pair of quad-type codes for the
block received via the bus 314, generates the corresponding
TYPE word and feeds the TYPE word to the payload field
generator 305 via the 8-bit bus 315. For example, when the
quad code for the even-numbered quad indicates that the
quad is composed exclusively of information words, and the
quad code for the odd-numbered quad indicates that the EOP
control word T is the third word of the quad, the type word
generator generates the TYPE word for a Type 11 block. As
another example, when both quad codes indicate that the
corresponding quads are composed exclusively of informa-
tion words, the type word generator generates a special
additional value of the TYPE word, such as 00. This special
value of the TYPE word is used only internally within the
encoder 100 to indicate that the block is a Type 1 block. This

10

15

20

30

35

40

45

50

55

60

65

18

value of the TYPE word is not inserted into the payload field
152 of the frame generated for transmission (see FIG. 4B).

When the type word generator 306 determines that the
block is a Type 1 block, it generates the master transition MT
in the first state, i.e., 01 in the preferred embodiment, and
feeds the master transition to the frame assembler 308 via
the 2-bit bus 316. When the type word generator determines
that the block is other than a Type 1 block, it generates the
master transition MT in the second state, ie., 10 in the
preferred embodiment, and feeds the master transition to the
frame assembler.

When the payload field generator 305 receives from the
type word generator 306 the special value of the TYPE word
that indicates the block is a Type 1 block, the payload field
generator adopts the block received from the block generator
302 via the bus 313 as the payload field 152 of the frame 153
that will be generated from the block (see FIG. 4B). The
payload field 152 has a size of 64 bits and is composed
exclusively of information words.

When the payload field generator 305 receives from the
type word generator 306 a value of the TYPE word that
indicates the block is not a Type 1 block, the payload field
generator transfers the contents of the block received from
the block generator 302 via the bus 313 into the sub-field
158 of the payload field 152 of the frame 156 that will be
generated from the block (see FIG. 4C), and inserts the
TYPE word into the sub-field 157 of the payload field. In
performing this transfer, any start-of-packet control word or
end-of-packet control word that appears in the block is not
transferred to the payload field to condense the block. When
the size of the contents of the block without the SOP or EOP
control word, is less than 56 bits, the payload field generator
pads the sub-field 158 to 56 bits, as shown in FIG. 7G, for
example. This makes the total size of the payload field 152
64 bits. The payload field generator employs a bank of 64
three-input data selectors that operate in response to the
TYPE word to transfer the contents of the block to the
payload field.

The payload field generator 305 feeds each payload field
PF that it generates to the 64-bit scrambler 307 via the 64-bit
bus 317.

The 64-bit scrambler 307 scrambles the payload field PF
received from the payload field generator 305 using a
high-order polynomial scrambler, the characteristics of
which will be described below. The scrambler may be
omitted in embodiments of the encoder 100 designed exclu-
sively for transmitting input data that is already random, as
described above. The 64-bit scrambler 307 feeds the
scrambled payload field SPF to the frame assembler 308 via
the 64-bit wide bus 315.

The frame assembler 308 appends the master transition
MT to the scrambled payload field SPF and feeds the
resulting 66-bit frame to the multiplexer 34 (FIG. 1) via the
66-bit wide bus 44. The master transition is preferably
appended to the front of the payload field, but may option-
ally be appended to the end of the payload field.

The use of self-synchronizing scramblers based on poly-
nomials to scramble bitstreams is known in the art. In the
coder and coding method according to the invention, the
payload field 152 of each frame 150 (sece FIG. 4A) is
scrambled so that when the frames are transmitted, the
resulting bitstream is statistically DC balanced and addition-
ally appears to be random. Scrambling the payload fields
enables the decoder to synchronize easily on the master
transitions, which are not scrambled. Choosing the tap
spacings of the polynomial to optimize the scrambler for a

US 6,718,491 B1

19

given application is challenging. In the case of the scrambler
for the 10 Gb/s Ethernet coder according to the invention,
the scrambling polynomials are chosen to meet the follow-
ing requirements:

the chosen polynomial must cause no violations of the

Ethernet-standard CRC 32 coding under exhaustive
three-error tests with spill-in and spill-out for all packet
sizes;

the polynomial tap spacings must be greater than eight to

prevent error multiplication from degrading the Ham-
ming distance among the TYPE words; and

the polynomial order should be >57 to prevent malicious

jamming and <64 to minimize implementation com-
plexity.

The inventors have identified a polynomial that meets the
above criteria, and an additional polynomial that meets most
of the criteria: the preferred choice is x**+x'°+x°. The
alternative choice is x*°+x*%+x°.

In the preferred embodiment, the blocks are scrambled
using a 64-bit, self-synchronizing, parallel scrambler using
the preferred polynomial.

FIG. 9A is a flow chart showing an example 280 of a
decoding method for decoding the frames generated by the
coding method and coder according to the invention.

The method starts in process 271. In process 272, a frame
is received from the demultiplexer 36 via the bus 45. In
process 273, the scrambled payload field of the frame is
descrambled. This process may be omitted if the encoder did
not scramble the payload (see above). In process 274, a test
is performed on the master transition of the frame to
determine whether the master transition is in the first state.
The first state is 01 in the preferred embodiment. When the
test result is YES, which indicates that the payload field of
the frame is composed exclusively of information words,
execution advances to process 277, which will be described
below. When the test result is NO, execution advances to
process 275.

ANO result in process 274 indicates that the payload field
of the frame is not composed exclusively of information
words, and therefore includes a TYPE word. In process 275,
the TYPE word is extracted from the payload field.

In process 286, the payload field of the frame is expanded
using the information provided by the TYPE word regarding
the structure of the payload field. Expanding the payload
field reverses the condensing that was applied by the
encoder to the block from which the frame was generated.
Thus, when the payload field is expanded, the coded control
words are re-coded to yield eight-bit control words.
Additionally, when the start of the packet or the end of the
packet appears in the payload field, a start-of-packet control
word or an end-of-packet control word, respectively, is
inserted into the payload field. As noted above, the TYPE
word indicates what portion of the payload field is occupied
by coded control words, and the location in the payload field
of the start of the packet or the end of packet. The processing
performed in process 276 will be described in more detail
below with reference to FIG. 9B. Execution then advances
to process 277.

In process 277 the payload field is adopted as a block of
received data.

In process 278, a test is performed to determine whether
all frames have been processed. When the test result is YES,
execution advances to process 279, where it ends. When the
test result is NO, execution returns to process 272 via
process 280 so that the next frame can be processed.

Process 276 of the method described above with reference
to FIG. 9A will now be described with reference to FIG. 9B.

10

15

20

25

30

35

40

45

50

55

60

65

20

Execution starts In process 291.

In process 293, a test is performed to determine whether
the TYPE word indicates that any coded control words
appear in the payload field, i.e., whether the encoder 100
derived the payload field from a Type 2 block or a Type 4
through Type 11 block. When the test result is NO, execution
advances to process 296, which will be described below.
When the test result is YES, execution advances to process
294.

In process 294, the TYPE word is used to identify the
portion of the payload field occupied by one or more coded
control words, and the number of coded control words. It can
be seen from FIGS. 7A-7L that the coded control words in
the frame derived from each block Type differ in number but
are always contiguous. However, in some frames, the coded
control words abut the head of the payload field, whereas in
others, the coded control words abut the end of the payload
field.

In process 295, the coded control words identified by
process 294 are decoded to yield the original control words.

In process 296, a test is performed to determine whether
the TYPE word indicates that a packet starts or ends in the
payload field, i.e., whether the encoder 100 derived the
payload field from a Type 3 through Type 12 block. When
the test result is NO, this indicates that the payload field was
derived from a Type 2 block. In this case, execution
advances to process 299, which will be described below.
When the test result is YES, execution advances to process
297.

In process 297, the position of the start of the packet or the
end of the packet in the payload field is identified from the
TYPE word.

In process 298, an SOP control word S or an EOP control
word T is inserted into the payload field. The control word
inserted, i.e., whether the control word S or T is inserted, and
the position in the payload field at which the SOP or EOP
control word is inserted are defined by the TYPE word.
Execution then advances to process 299.

In process 299, execution returns to the main routine.

Either or both of the control word decoding performed in
process 295 and the control word insertion performed in
process 298 insert 8-bit control words into the payload field.
This fills the space in the payload field formerly occupied by
the TYPE word and, in some frames, fill bits.

FIG. 10A is a block diagram showing a first embodiment
of the decoder 120. The decoder is composed of the frame
decoder 191, the 64-bit parallel descrambler 192, the type
word extractor 193, the block generator 194 and the block
sequence detector 195.

The frame decoder 191 receives each 66-bit frame from
the demultiplexer 36 via the 66-bit bus 45 (FIG. 1). The
frame decoder reads the master transition at the front of the
frame and feeds the master transition MT to the type word
extractor 193. The frame decoder feeds the remaining 64 bits
constituting the payload field of the frame to the descrambler
321.

The descrambler 192 is a self-synchronous polynomial
descrambler that uses the same polynomial as was used by
the scrambler 307 (FIG. 8) in the encoder to scramble the
payload field. The descrambler is preferably a parallel
descrambler to reduce latency. The descrambler descrambles
the scrambled payload field received from the frame decoder
191 and feeds the resulting payload field PF to the type word
extractor 193 and the block generator 194. In a decoder
specifically designed for decoding frames in which the
payload field has not been scrambled, the descrambler can
be omitted.

US 6,718,491 B1

21

The type word extractor 193 receives the payload field PF
from the descrambler 192 and additionally receives the
master transition MT from the frame decoder 191. The type
word extractor operates only when the master transition is in
its second state, corresponding to a frame whose payload
field is not composed exclusively of information words. The
type word extractor extracts the TYPE word from the
sub-field 157 of the payload field 152 (FIG. 4C) and feeds
the TYPE word to the block generator 194 and the block
sequence detector 195.

The block generator 194 receives the payload field PF
from the descrambler 192, the TYPE word from the type
word extractor 193 and the master transition MT from the
frame decoder 191. The block generator operates in response
to the master transition. When the master transition is in the
first state, the block generator adopts the payload field PF as
a block of received data. When the master transition is in the
second state, the block generator expands the payload field
using the information provided by the type word regarding
the structure of the payload field. Expanding the payload
field reverses the condensing that was applied by the
encoder to the block from which the frame was generated.
Thus, when the payload field is expanded, the coded control
words are re-coded to yield eight-bit control words.
Additionally, when the start of the packet or the end of the
packet appears in the payload field, a start-of-packet control
word or an end-of-packet control word, respectively, is
inserted into the payload field. As noted above, the TYPE
word indicates what portion of the payload field is occupied
by coded control words, and the location in the payload field
of the start of the packet or the end of packet. Finally, the
block generator adopts the payload field after expansion as
the block of received data.

The block generator 194 feeds the block of received data
to the 4x8b/10b decoder 120 via the bus 43 (FIG. 1).

The decoder also includes the block sequence detector
195. The block sequence detector receives the TYPE word
from the type word extractor 193 and the master transition
MT from the frame decoder 191. The master transition of a
frame and the TYPE word of the frame, when present,
collectively define what kind of frame the frame is. As noted
above, the frame can be one of four different kinds, namely,
one composed exclusively information words D (generated
from Type 1 block), one that includes the start of a packet S
(generated from Type 3 or Type 4 block), one that includes
the end of a packet T (generated from one of Type 5 through
Type 12 block) and one composed exclusively control words
Z (generated from Type 2 block). The encoder generates the
four different kinds of frames in a predetermined order,
namely: S,D,...,D, T,Z,...,Z,5,D,...,D, T,Z, ...,
Z, etc. The frames must be received by the decoder 120 in
the same predetermined order. The block sequence detector
monitors the order of the kinds of frame received, and
generates the error flag ERR when the TYPE word and the
master transition indicate that the frame is of a kind that
violates the predetermined order. The block generator 194
adds the error control word E to the block of received data
generated from the frame in response to the error signal. The
error control word causes the MAC 12 (FIG. 1) to void the
packet of which the block forms part.

FIG. 10B is a block diagram showing a second embodi-
ment of the decoder 120. The decoder is composed of the
frame decoder 320, the 64-bit parallel descrambler 321, the
payload field decoder 322 the type word decoder 323, the
STZ decoder 324 and the multiplexer 325.

The frame decoder 320 is connected by the 66-bit wide
bus 45 to the output of the demultiplexer 36 (FIG. 1) from

10

15

20

25

35

40

45

50

60

65

22

which it receives each frame recovered from the received
bitstream. The frame decoder reads the master transition at
the front of the frame and feeds the master transition MT to
the type word decoder 323 via the 2-bit bus 330. The frame
decoder feeds the remaining 64 bits constituting the
scrambled payload field of the frame to the descrambler 321
via the 64-bit bus 331.

The descrambler 321 is a self-synchronous polynomial
descrambler that uses the same polynomial as was used by
the scrambler 307 (FIG. 8) in the encoder to scramble the
payload field. The descrambler is preferably a parallel
descrambler to reduce latency. The descrambler descrambles
the scrambled payload field received from the frame decoder
320 and feeds the resulting payload field to the payload field
decoder via the 64-bit bus 332. Additionally, the eight bits
closest to the head of the payload field output by the
descrambler, i.e., the bits that represent the TYPE word
when the TYPE word is present in the payload field 152
(FIG. 4A), are fed additionally to the type word decoder 323
via the eight-bit bus 333.

The type word decoder 323 receives the master transition
MT from the frame decoder 320 and additionally receives
eight-bit words, some of which are TYPE words, from the
descrambler 321. When the master transition is 10, indicat-
ing that the payload field is not composed exclusively of
information words, the 8-bit word received via the bus 333
is the TYPE word extracted from the payload field. The type
word decoder truncates the TYPE word to its first four bits
and feeds the truncated TYPE word to the payload field
decoder 322 via the four-bit bus 334. Alternatively, the
TYPE word may be used without truncation.

When the master transition is 01, indicating that the
payload field is composed exclusively of information words,
the type word decoder performs no decoding of the 8-bit
word received via the bus 333. Instead, the type word
decoder generates an additional truncated TYPE word that
indicates that the payload field is composed exclusively of
information words. It should be noted that, even with the
additional truncated TYPE word indicating a payload field
composed exclusively of information words, the set of
TYPE words is sufficiently small for the TYPE words to be
reliably represented by a four-bit code in the internal pro-
cessing performed by the decoder.

The type word decoder 323 additionally includes a block
sequence detector (not shown) similar to the block sequence
detector 195 described above. The block sequence detector
uses the master transition MT and the TYPE words to track
the order of the kinds of frame and sends an error signal ERR
to the STZ decoder 324 via the connection 336 when the
order of the kinds of frame deviates from the predetermined
order described above.

The payload field decoder 322 receives the payload field
from the descrambler 321 and additionally receives the
corresponding truncated TYPE word from the type word
decoder 323. The payload field decoder examines the trun-
cated TYPE word to determine the structure of the payload
field, i.e., which data elements of the payload field are
information words, which data elements are coded control
words and the position of the start of a packet or the end of
a packet (if any) in the payload field. In response to the
structure defined by the truncated TYPE word, the payload
field decoder transfers the contents of the payload field to an
eight-word, 64-bit block. A set of 64, three-input data
selectors that operate in response to the TYPE word can be
used for this.

When the TYPE word corresponds to a Type 3 through 12
block, the payload field decoder 322 inserts into the block a

US 6,718,491 B1

23

start-of-packet control word S or an end-of-packet control
word T in the position in the block indicated by the truncated
TYPE word. The payload field decoder feeds the 64-bit
block to the STZ decoder 324 via 64 of the 72 conductors of
the bus 336. The payload field decoder additionally feeds,
via the remaining eight conductors of the bus 336, a set of
eight control word flags for the block. The control word flags
indicate whether each word in the block is an information
word or a control word. The payload field decoder selects the
set of control word flags fed to the STZ decoder with each
block in response to the truncated TYPE word, because the
block Type of the block defines whether each word of the
block is an information word or a control word.

The STZ decoder 324 operates in response to the eight
control word flags received together with the block from the
payload field decoder 322. The STZ decoder decodes the
coding of each coded control word in the block to recover
the original eight-bit control word. The words in the block
subject to decoding are indicated by their respective control
word flags indicating that the words are coded control
words.

The STZ decoder 324 builds two quads by transferring the
first four words of the block and their respective control
word flags to the 36-bit bus 337, and by transferring the
second four words of the block and their respective control
word flags to the 36-bit bus 338. The busses 337 and 338
feed the quads and their control word flags in parallel to the
multiplexer 325.

The multiplexer 325 alternately feeds the quads and their
respective control word flags received via the busses 337
and 338 to the 4x8b/10b encoder 38 via the pseudo-XGMII
bus 43.

The invention provides a coder and coding method with
a very low overhead when implemented as a 64b/66b code
(3.125%). The overhead is substantially lower than 8b/10b
(25%). The coder and coding method according to the
invention employ a single, self-synchronizing scrambler.
Other coding schemes require periodic transmission of syn-
chronization information and complex techniques to initial-
ize non-self-synchronous scramblers. The coder and coding
method according to the invention provide good error detec-
tion properties for 10 Gb/s Ethernet when the scrambler
polynomial is specifically chosen not to interfere with the
Ethernet-standard CRC-32 coding. The coder and coding
method provide an excellent mean time to false packet
acceptance (MTFPA) by choosing the TYPE words and the
control words to have a 4-bit minimum Hamming distance.
At a bit error rate of 10™° and a bit rate of 10.3 Gb/s, the
coder and coding method have an MTFPA approximately
equal to that of 1 Gb/s Ethernet, which uses 8b/10b line
code, at a bit error rate of 107, The coder and coding
method according to the invention begin encoding as soon as
enough information words are acquired-in particular, it is
not required to buffer an entire Ethernet packet prior to
transmission. The coder and coding method according to the
invention allow Ethernet data to be transmitted at a bit rate
of 10.0 Gb/s using existing lasers designed for use in
SONET OC-192 transmitters. A 10 Gb/s Ethernet standard
based on the coder and coding method according to the
invention can be adopted now rather than having to wait for
lasers capable of modulation at 12.5 Gbaud to be developed.

Although this disclosure describes illustrative embodi-
ments of the invention in detail, it is to be understood that
the invention is not limited to the precise embodiments
described, and that various modifications may be practiced
within the scope of the invention defined by the appended
claims.

10

15

20

25

35

40

45

50

55

60

65

24

We claim:
1. A method for coding a packet of information words into
frames for transmission, the method comprising:
receiving blocks of input data, the input data including
control words and the packet of information words, the
packet having a start preceded by ones of the control
words and an ending followed by others of the control
words, the blocks being smaller than the packet;

determining when a block consists exclusively of infor-
mation words;

when the block consists exclusively of information words,

appending to the block a master transition having a first
sense to form one of the frames;

when the block does not consist exclusively of informa-

tion words:

condensing the block to accommodate a TYPE word;
and

generating the TYPE word having a value that indicates
one of the following structural properties of the
block: (a) a position of the start of the packer in the
block, (b) a position of the end of the packet in the
block, and (c) the block being composed exclusively
of control words, and inserting a TYPE word into the
block, and

appending to the block a master transition having a
second sense, opposite to the first sense, to form the
one of the frames.

2. The method of claim 1, in which compressing the block
includes re-coding ones of the control words using fewer
bits.

3. The method of claim 1, in which the type word is
selected from a set of type words having a specified mutual
Hamming distance.

4. The method of claim 3, in which:

the type words each consist of T bits; and

the method additionally comprises generating the set of

possible bit patterns by a process including:

adopting a (T/2)-bit binary pattern as a first half of a bit
pattern in the set of possible bit patterns, and

generating a second half of the bit pattern by duplicat-
ing or complementing the first half of the bit pattern
depending on a bit parity value of the first half of the
bit pattern.

5. The method of claim 1, additionally comprising recov-
erably scrambling the block prior to preceding the block
with the master transition.

6. The method of claim 5, in which:

each of the type words consists of T bits; and

in recoverably scrambling the block, the block is recov-

erably scrambled using a polynomial having coeffi-
cients separated by greater than T such that a single
error in transmitting the frame, when the scrambling is
recovered, will not cause multiple errors to fall within
any of the type words and degrade a minimum Ham-
ming distance of the type words.

7. The method of claim 1, in which condensing the block
includes removing from the block a control word that
indicates one of (a) the start of the packet and (b) the end of
packet.

8. The method of claim 7, in which condensing the block
includes re-coding remaining ones of the control words
using fewer bits.

9. The method of claim 8, in which, in re-coding the
control words using fewer bits, the control words are
re-coded using codes have a specified mutual Hamming
distance.

US 6,718,491 B1

25

10. A coder for coding blocks of input data into respective
frames for transmission, the input data including control
words and a packet of information words, the packet having
a start preceded by ones of the control words and an ending

followed by others of the control words, the blocks being 5

smaller than the packet, the frames including a frame
corresponding to the block, the coder comprising:

a type word generator that receives the block and gener-
ates a TYPE word for a block, the TYPE word having
a value that indicates one of the following structural
properties of the block: (a) whether the block is com-
posed exclusively of control words, (b) a position of the
start of the packet in the block, (c) a position of the end
of the packet in the block, and (d) whether the block is
composed exclusively of control words;

a master transition generator that operates in response to
the TYPE word and generates a master transition in a
first sense when the TYPE word indicates that the block
is composed exclusively of information words, and
otherwise generates the master transition in a second
sense, opposite to the first sense;

a payload field generator that operates in response to the
TYPE word and that adopts the block to form a payload
field of the frame when the TYPE word indicates that
the block is composed exclusively of information
words, and that otherwise condenses the block and
inserts the TYPE word into the block to form the
payload field; and

a frame assembler that appends the master transition to

the payload field to form the frame.

11. The coder of claim 10, in which the payload field
generator includes a re-coder that condenses the block by
re-coding remaining ones of the control words using fewer
bits.

12. The coder of claim 10, in which the type word is
selected from a set of type words having a specified mutual
Hamming distance.

www.FreePatentsOnline.com

10

—
w

20

25

30

35

26
13. The coder of claim 12, in which:
the type words each consist of T bits; and

the coder additionally comprises a type word generator

that generates the set of possible bit patterns, the type

word generator including:

a first-half generator that adopts a (T/2)-bit binary
pattern as a first half of a bit pattern in the set of
possible bit patterns, and

a second-half generator that generates a second half of
the bit pattern by duplicating or complementing the
first half of the bit pattern depending on a bit parity
value of the first half of the bit pattern.

14. The coder of claim 10, additionally comprising a
scrambler interposed between the payload field generator
and the frame assembler.

15. The coder of claim 14, in which:

each of the type words consists of T bits; and

the scrambler is configured to operate using a polynomial
having coefficients separated by greater than T such
that a single error in transmitting the frame, when the
scrambling is recovered, will not cause multiple errors
to fall within any of the type words and degrade a
minimum Hamming distance of the type words.

16. The coder of claim 10, in which the payload field
generator includes a control word removal module that
condenses the block by removing from the block a control
word that indicates one of (a) the start of the packet and (b)
the end of the packet.

17. The coder of claim 16, in which the payload field
generator additionally includes a re-coder that condenses the
block by re-coding remaining ones of the control words
using fewer bits.

18. The coder of claim 17, in which the re-coder re-codes
the control words using codes having a specified mutual
Hamming distance.

