Watchdog

Richard Walker

February 23, 2009

Abstract

A hardware device for alerting operators to a firmware-lockup condition in
Czochralski crystal growth furnace. By diagnosing lockup in a simple hard-
ware add-on, the operator is able to reset the crystal growth algorithm and
prevent disruption to the growth process.

0.1 Need for lockup detection

A Crzochralski crystal growth furnace control system may lockup for various
reasons. Several common conditions have been identified and corrected or im-
proved. These include 1) ground loops, 2) unstable power supply voltages, 3)
heat buildup in key communication ICs, 4) timeout conditions in printer sub-
system, and 5) static sensitivity.

Several other factors are difficult to address due to the age and condition of the
control system. These include 1) intermittent connection due to wear of plat-
ing in connectors, 2) oxidation and polarization of IC socket plating, 3) poorly
thought-out grounding systems in a legacy system creating overvoltage condi-
tions at sensitive nodes, and 4) possible bugs in the control system hardware and
software (eg: asynchronous sampling of ADCs producing unpredictable control
input).

Because it is not practical or possible to solve all the lock-up issues given the
nature of a legacy control system, it is desirable to alert the operators to lockup
when it occurs. In most cases, the system can simply be reset and the growth
process will continue without incident. If, however, the operators do not identify
and correct lockup within a critical period of time, the growth parameters will
likely have drifted far enough to have created a defect in the crystal. This will
require either remelting the crystal, or simply tailing off the growth to salvage
a partial initial portion of the growth. In either case, an uncaught lockup event
is costly.

0.2 Theory of operation

The basic idea for detecting lockup is to look for a "heartbeat" that is continuous
under normal operation. A good candidate for this is the normal update process
for the control CRT. Under normal run conditions, the control CRT is constantly
updated with the process time, temperature, line currents, diameter, and so
forth.

The watchdog sits in series between the CPU and the CRT emulator board. It
is designed to simply snoop on any RS-232 transmission to the system monitor.
The data rate is 9600 baud with no parity.

Everytime a character is sensed, a timer is reset. If the timer reaches 30 seconds
without any character received, an audible alarm is sounded.

The alarm will continue to sound until a character is again sensed on the CRT
input line. Reception of a character will immediately silence the watchdog. Un-
der normal conditions, the watchdog will automatically detect lockup, send an
alarm, and then reset back to idle condition with no explicit operator interven-
tion beyond that required to address the lockup itself.

0.3 Implementation Details

To simplify operation, the watchdog has been designed to plug into two exist-
ing connectors. This method of installation requires no wiring or mechanical
modifications. The connectors themselves provide all the mounting integrity
required.

The watchdog board is installed on the BOS panel and snaps into both the
existing CRT connector and the currently unused printer connector.

To save money and simplify the circuit design, a microchip P16F88 processor
is used. This processor is approximately $5 and includes the required RS232
interface, a counter-timer subsystem, and is able to run off an internal 8MHz
ring-oscillator to save parts count.

The RS232 signal is level-shifted to 5V TTL levels using an NPN transistor.

The Sonalert alarm module is run off 12V power for maximum volume. An
NPN logic transistor is used to interface 12V driver to the 5V microprocessor
output.

0.4 PCB layout

The circuit board was designed and layed out in Kicad .*

Lwww.kicad.sourceforge.net

Watchdog Timer

0.5 Bill of Materials

| Qty | part | description | Digikey | unit price |
2 | C1-2 0.1uf cap 399-4151-ND $0.16
1 D1 LED P605-ND $0.38
1 P1 Buzzer 688-1029-ND $4.51
1 P3 CONN 10x2M MHB20K-ND $2.00
1 P4 CONN 10x2F MSPV20-ND $3.37
2 Q1-2 NPN 2N3904FS-ND $0.11
1 R1 510 ohm CF1/4510JRCT-ND $0.03
6 R2-8 10k ohm CF1/410KJRCT-ND $0.03
1 U1 PIC16F88 PIC16F88-1/P-ND $5.00
1 S1 18DIP socket AE9995-ND $0.54

0.6 Firmware

The watchdog is programmed directly in Microchip assembly language. The
resulting file is assembled into a HEX file using the GNU pic programming tool
gpasm.?. The programming is done using the picp programming software® and
the Olimex MPASM programmer PG-00003 *.

333k skokosk sk ok ook sk ook sk sk sk skok sk ook sk sk sk ook sk skok sk skok sk sk sk sk sk sk sk skok sk ook sk skok sk skok sk skok sk skokosk skok ok skok kR ok

; PIC16F874

; 1. Have the processor generate an interrupt every 1 ms.
; 2. Toggle Port A <4> every 500 ms.

; 3. Keep a count of interrupts in timer0—3 for real—time
)

; Notes:

; This program generates an interrupt every 1 ms.

Upon interrupt

; it updates a counter.

; PORTA<4> is an output pin. It is toggled every 500 ms.

; The processor runs off its internal 8MHz ring oscillator

; RS—232 input is RB2/SDO (pin 8)
; RS—232 output is RB5 (pin 11)
; Pushbutton is RB7

3 3k sk kook ok ok sk sk sk skook sk ok sk sk sk skook sk ok sk sk sk skosk sk ok sk ok sk skosk sk ok sk ok sk sk sk skok skok sk sk sk skok sk sk sk sk skok sk ok sk skosk kok sk ok sk kook kok ok

list p=16188 ; list directive to define processor
#include <pl16f88.inc> ; processor specific variable definitions
errorlevel 1,—(305)

; _CONFIG _CP_OFF & WDT OFF & BODEN OFF & PWRIE ON & HS_OSC & _LVP_OF

__CONFIG _CP_OFF & WDT OFF & BODEN_OFF & PWRIE ON & INTRC IO & LVP_

; The particular choice given above turns code protection off , watch dog

; timer off , brown—out reset disabled , power—up timer enabled, Internal RC
; oscillator with i/o pins selected, flash program memory write disabled ,
; low—voltage in—circuit serial programming disabled , and data EE

; memory code protection off.

;xxx %+ VARIABLE DEFINITIONS
cblock 0x20 ; define a series of variables.
w__temp ; isr context storage
status _temp ; isr context storage

2http://gputils.sourceforge.net/
3http://home.pacbell.net /theposts/picmicro/
4http://www.sparkfun.com

endc

count?2
countl
countO
flag

sporth
timer0
timerl
timer2
timer3

; Bits within PORTA

ToggleBit
PortAMask

equ
equ

; The MSB of a 3—byte counter

; counting the number of Timer 2 interrupts
; The LSB of the same 2—byte register.

; set to one after timeout

; keep track of portb state

; clock timer

4
B’00000000°

)

Y

An output bit, toggled every 500 ms.

; We’ 1l make all of PORT A an output.

3 3k sk Kook ok ok sk sk sk skook sk ok sk sk sk skook sk ok sk sk sk skosk skok sk sk sk skosk sk ok sk ok sk skosk skok skok sk sk sk skok sk sk sk sk skok sk ok sk skosk kok sk ok sk kok kok ok

reset :

isr:

endint :

ORG

clrf
goto

ORG

movwf
swapf
clrf

movwf

btfss
goto
call

swapf
movwf
swapf
swapf
retfie

0x000

PCLATH
init

0x004

w__temp
STATUS ,W
STATUS
status_temp

PIR1, TMR2IF
endint
Timer2

status_temp ,w

STATUS
w_temp, f
w_temp,w

)

)

Y

)

Y
Y
)
)
)

Y

)

)

)

)
Y
Y

)

processor reset vector
ensure page 0 is used
go to beginning of program

interrupt vector location

save current W register contents

move status register into W register
select Bank 0

save off contents of STATUS register
There’s no need to save PCLATH since
we’ 1l stick to Bank 0 of program memor

isr code can go here or
be located as a call subroutine elsewh

If Timer 2 caused the interrupt , handl

retrieve copy of STATUS register
restore pre—isr STATUS register conten

restore pre—isr W register contents
return from interrupt

Dok Rk kKR kK R KK KK R KK Sk oK K R K K K KK R kK Sk kK Sk ok K K K kK R KK
; Timer 2 Interrupt handler.

)
)
)

Y

decrements counter every ms until zero
then sets beeper bit and count "flag"
will then stall indefinitely until flag is cleared.

Timer2

btfsc
goto

decf
skpz
goto
decf
skpz
goto

bsf
movlw
movwf

clrf
movlw
movwf
clrf

endcnt

flag ,0 ; count down if beeper is off
endcnt

count0 ,F ; Decrement the LSB of the 1-ms counter.
endcnt

countl ,F ;

endcnt

PORTA, 2 ; turn on beeper

H’FF’

flag

count0 ; Reinitialize counters
d’100’ ; d’16’=4 seconds

countl

count2 ; not used

BCF PIR1,TMR2IF ; Clear int flag and continue.

return

3k 3k sk skosk sk sk sk skosk sk skoske sk sk sk skosk sk skosk sk skosk sk skosk sk skosk sk sk sk skosk sk sk sk sk sk sk skoske sk skoskeoskskosk skosk sk sk skosk sk skosk sk skosk sk sk skoske sk skosk sk sk sk sk skosk sk skosk ok
START OF CODE to initialize the processor

The initialization code goes here since we’ll end up here shortly after a rese
3k 3k >k 3k koK sk sk ok skok sk skook sk sk sk skosk Skosk sk skosk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk skosk skok sk skoskosk skoskosk sk skosk skosk sk skoskoskosk skosk sk skosk sk skosk sk skok ok sk ok skosk ok

init clrf

clrf
clrf
clrf
clrf

banksel
movlw
movw{

bef

sporthb ; clear variables
timer0
timerl
timer2
timer3

OSCCON
B’01110000° ; set 8MHz internal oscillator
OSCCON

STATUS,RPO ; Select Bank 0

)

)

)

)

)

bef
clrf
clrf
movlw
movw{

clrf

clrf

STATUS,RP1
PORTA
count0
d’100°’
countl

count2

flag

banksel TRISA

movlw
movwf

PortAMask
TRISA

banksel ADCONO

movlw
movwf{

B’00000000°
ADCONO

banksel ANSEL

movlw
movw{

; RB7,6,4 are

B’00000000°
ANSEL

; RB2/SDO (pin 8) RX input
; RB5 (pin 11) TX output
; RB7 pushbutton

interrupt sources

banksel TRISB

movlw
movwf

b’11110101°
TRISB

BAUD RATE SETTINGS

banksel SPBRG

;movlw

movlw

movw{

d’129°
d’s51’
SPBRG

banksel TXSTA

movlw

movwf

b’00100100°
TXSTA

banksel RCSTA

movlw

movwf

b’10010000°
RCSTA

Y

Initialize Port A by

Initialize counters

Turn off beeper flag

Initialize direction

ADC off

All bits are digital

clearing the output latch

pins for Port A using TRI

RBO INT input, RB2 input

9600 baud @ 20 MHz +0.16 err
9600 baud @ 8 MHz int RC osc

brgh = 1, SYNC=0

enable async xmit, set brgh

bank 0

enable asyn rcvr, SPEN=1, CREN=1

)
)
Y
)

)

banksel RCREG

movf RCREG,W
movf RCREG,w
movf RCREG,w

banksel PORTA
movlw d’33’

flush receive buffer

7'7

send

send ’\n’

29999999399))Y) YY)

call putchar
movlw d’10’

call putchar
bef STATUS,RPO

Revert to Bank 0

>k ok 3k ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok sk sk sk sk sk sk sk ok ok skook ok ok ok sk ok sk sk ok ok sk ok ok ok sk sk sk ok sk skosk sk sk sk ok ok skook ok ok ok ok ok ok ok ok ok

Initialize Timer 2

Set up Timer 2 to generate

interrupts

every 1 ms.

Since we’re assuming an ins

cycle consumes 0.2 us (20MHz clock), we need an interrupt every 5000 instructic

This

)

Y

will generate interrupts

; We’ll set the prescaler to 4, the PR2 register to 125, and the postscaler to 1

every 4 x 125 x 10 = 5000 instruction cycles.

>k 3K 3k 3k 3k sk sk sk sk sk >k 3k 3k 3k 3k 3k 3k sk ok sk k kK K Sk K >k ok 3k 3k >k 3k 3k skosk 3k skosk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk skosk skosk skoskoskoskosk sk oskosk ok ok ok

CLRF TMR2

banksel INTCON
bsf INTCON, PEIE

banksel PIE1
clrf PIE1
bsf PIE1 ,TMR2IE

banksel PIR1

CLRF PIR1

movlw B’01001001°
movwf T2CON

banksel PR2
;movlw D’125° -1
movlw D’50°—1
movwf PR2

banksel INTCON
bsf INTCON, GIE

Clear Timer2 register

bank 0

Enable peripheral

interrupts

enable timer 2 interrupts.

bank 0
Clear peripheral

interrupts Flags

Set Postscale = 10, Prescale = 4, Timer 2 = of

bankl

Timer 2 to divide byl25 (20MHz)
Timer 2 to divide by50 (8MHz)

bank0

Global interrupt enable.

BSF T2CON, TMR20N ; Timer2 starts to increment

3Kk o o o ok o o 3 3 3 ok K K K KK KK K KKK oK ok ok ok ok o o ok o o o o o o o 3 3 K K K K K K K K KK K K
; main() This is the main program loop.

loop call getchar ; stall waiting for a character
clrf flag ; input clears the beeper
bef PORTA, 2 ; turn off beeper
clrf count0 ; Reinitialize counters
movlw d’100’ ; d’16’=4 seconds
movwf countl
clrf count?2 ; not used

banksel PORTA
movlw d’1’
xorwf PORTA, f

goto loop

H sk sk sk sk sk sk sk skosk sk skoskosk skoskosk skosk sk skosk sk skosk sk skosk skoske sk sk sk sk sk sk skosk sk skosk skosk sk skosk sk skosk sk sk sk skosk skosk sk skosk sk sk sk sk sk sk skoske sk sk sk sk sk sk sk sk sk sk sk ok
; RS—232 output routine
putchar — loops until char accepted

)

)

putchar banksel PIR1
btfss PIR1, TXIF ; xmit buffer empty?

goto putchar
movwf TXREG

banksel PORTA

return

; RS—232 input routine
getchar — loops until char received

returns value in w

Y

Y

)

getchar banksel PIR1

btfss PIR1,RCIF ; got data?

goto getchar

movf RCREG,w ; read data

bef RCSTA,CREN ; disable (clear any errors)
bsf RCSTA,CREN ; re—enable

return

10

)

directive

’end of program’

)

