
Czo
hralski Pro
ess Development and Control with DSIMRi
hard Walker∗Abstra
tThis paper presents a simple timestep-based simulator (DSIM) providing the 
ore fun
tionality of Labview in less than 700 linesof C. Linear and non-linear analog elements su
h as integrators, di�erentiators, gain elements, 
omparators, PID 
ontrollersand so forth are typi
ally implemented in less than a dozen lines of C-
ode. A Czo
hralski 
rystal growth is simulated using asimple 
rystal growth model and simulated furna
e thermal response. A simple Re
ipe subroutine is 
alled at every simulationpoint to update 
rystal Diameter and Average Pull Rate based on table lookup. After the simulation algorithm is re�ned usinga syntheti
 model, it is anti
ipated that ea
h software stub be repla
ed by an equivalent 
all to a
tual hardware. This 
an bedone in stages. For example, the Temperature 
ontrol loop 
an be run on a real furna
e with the IR temp sense data being fedto a syntheti
 software 
rystal growth model. Be
ause the 
ore simulator is stripped of all the unne
essary graphi
 overheadof Labview, the resulting system is easily modi�ed, fully transparent in operation, and 
apable of ultra-high reliability.1 Introdu
tionSimulating a 
omplex system 
an easily turn into a tangled mess of 
omputer 
ode. However, the simple algorithmdes
ribed here is 
apable of handling all the 
ommuni
ation between multiple system 
omponents in a stru
tured,guaranteed stable way. The algorithm (
alled DSIM) and was invented and �rst des
ribed as a simulator for non-linear bang-bang phased-lo
k-loop 
ir
uits1. The methodology for simulation and 
ontrol used in DSIM will be quitefamiliar to users a
quainted with other systems su
h as Labview and SPICE. A simple DSIM implementation of aCzo
hralski 
rystal growth only requires 700 lines of C, in
luding the simulator itself and all required models!To setup a DSIM simulation, a fun
tional blo
k diagram of the system must be 
reated. Ea
h of the wires or signalsinter
onne
ting ea
h blo
k is given a unique name and number. The fun
tionality of ea
h blo
k is 
aptured in aC-subroutine. Ea
h subroutine will be 
alled at every time step. The parameters to the subroutines will be the nodenumber of the inter
onne
ting signals for that node. The number of ea
h node indexes into a data stru
ture whi
hallows the blo
k to a

ess the pro
ess value for that signal for the previous and 
urrent time step. In addition, afuture value is expe
ted to be updated for ea
h blo
k whi
h has an output signal. The 
ore algorithm handles allthe 
ommuni
ation between fun
tional blo
ks, timestep 
ontrol and data I/O.The next se
tion des
ribes the 
ore algorithm in detail and gives examples of a number of di�erent fun
tional blo
ks.
∗Ri
hard Walker, Consulting. <walker�omnisterra.
om>1 Ri
hard Walker, �Clo
k and Data Re
overy for Serial Data Communi
ations�, pp 62-65, BCTM tutorial, September 27, 1988.(http://www.omnisterra.
om/walker/pdfs.talks/b
tm2.maker.pdf).
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2 Simulation AlgorithmThe 
ore of the simulator is a set of three �oating point arrays, indexed by node numbers. The three arrays 
ontainthe 
urrent, past and 
al
ulated future value of every state variable used by the simulation. The 
ode below allo
atesone master table of size 3*NUMNODES and then indexes into the table by three base pointers 
alled �old�, �node�,and �new�. The reason for using pointers will be obvious later as the algorithm is des
ribed.double nodetab le [ 3∗NUMNODES ℄ ;double ∗old , ∗node , ∗new ;main ( ) {. . .f o r ( i =0; i <3∗NUMNODES; i++) {nodold = nodetab le ;}o ld = nodetab le ;node = nodetab le+NUMNODES;new = nodetab le+2∗NUMNODES;. . .The behavior of every element in the simulation must be de�ned by C-
ode subroutine. Ea
h element will be 
alled atea
h timestep and has 
ertain responsibilities. The element will be 
alled with an argument list of the node numbersto whi
h it is 
onne
ted. The element will use these numbers to index into the three arrays to 
ompute a new outputvalue. Consider a simple ampli�er that 
ould be des
ribed by the following prototype:void amp l i f i e r ( input , output , gain , r e f )i n t input , output ;double gain , r e f ;. . .The amplifer 
an a

ess the 
urrent input voltage (or pro
ess variable) by �node[input℄�, the value of the pro
essvariable at the previous timestep by �old[input℄�, and 
an set its output by writing to �new[output℄�. Here is the 
odefor the body of the ampli�ernew [ out ℄ = ( gain ∗ ( node [ in ℄ − r e f e r e n 
 e ) ) + r e f e r e n 
 e ;Be
ause the two previous timestep values are always available for every node, it is possible to implement a dis
retetime version of any se
ond order system. For example, here is the 
ode for an integrator using trapezoidal integration:void i n t e g r a t e ( in , out , gain )i n t in , out ; double gain ;{ double 
hunk ; /∗ new in t e g r a t ed por t i on o f s i g n a l ∗/
hunk = ( ( gain /2 . 0 ) ∗ ( o ld [ in ℄ + node [ in ℄ ) ∗ s t e p s i z e ) ;new [ out ℄ = node [ out ℄ + 
hunk ;}The integration is performed by taking the previous value of the input voltage �old[in℄�, adding it to the 
urrent valueof the input voltage �node[in℄�, dividing by two and then adding it to the 
urrent output voltage �node[out℄�. Thenew value is then used to update the value of the output node for the next (future) timestep �new[out℄�.Ea
h element is 
alled in any order at ea
h time step. The network topology is restri
ted to have one and only oneelement driving ea
h node. Many elements may share the same input node. All the elements 
an be thought of ashaving in�nite input impedan
e and zero output impedan
e.
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The 
ore 
ontrol algorithm for the simulator is simple. It simply 
alls update repeatedly to allow ea
h blo
k toupdate the new[℄ array based on the values of the old[℄ and 
urrent node[℄ array values. Then it simply shifts thepointers so that the 
urrent node[℄ array be
omes the old array, and the newly written new[℄ values be
ome the
urrent node[℄ values. Be
ause the global arrays were de�ned with node pointers, there is no a
tual 
opying thato

urs. The pointers are simply shu�ed:f o r ( simtime=STARTTIME; simtime<=STOPTIME; simtime=simtime+dt ) {update ( ) ; /∗ update nodes ea
h t s t ep ∗/i f ( simtime−SAVETIME >= saves t ep∗ points_plotted ) {output ( ) ;po ints_plotted++;}/∗ swap po i n t e r s to avoid 
opying data ar rays ∗/temp = old ;o ld = node ;node = new ;new = temp ;}The output() routine 
an be 
alled at full or de
imated resolution to write a log �le that 
an then be plotted with agraphing tool su
h as pdplot2.3 Crystal Growth ExampleA blo
k diagram for the Adema 
rystal growth system is shown in Figure 1.A system de�nition �le for this blo
k diagram is shown below:#de f i n e DD 1 // Diameter Target#de f i n e D 2 // a
 tua l Diameter#de f i n e PP 3 // APR ta rg e t#de f i n e P 4 // a
 tua l APR#de f i n e TSET 5 // TEMP ta rg e t#de f i n e T 6 // a
 tua l TEMP#de f i n e LEN 7 // length#de f i n e KVA 8 // KVA#de f i n e APR 9 // APR#de f i n e DAVG 10 // average diametervoid update ( ) /∗ r e s p on s i b l e f o r updating node [ ℄ ∗/ {r e 
 i p e (LEN, DD, PP) ;model (P, LEN, T, D) ; /∗ 
 a l 
 u l a t e d , g iven p , l , t ∗/dia (D, DAVG) ; /∗ f i l t e r diameter data ∗/pid (DD, DAVG, P, &pid1 ) ; /∗ s e tpo in t , 
urrent , d r i ve ∗/i n t e g r a t o r (P, LEN, 1 . 0 / 3 6 0 0 . 0 ) ; /∗ 
onvert APR to length ∗/apr (P,APR, 3 0 0 . 0 ) ;tps (APR, PP, TSET) ;pid (TSET, T, KVA, &pid2 ) ; /∗ s e tpo in t , 
urrent , d r i ve ∗/therm (KVA, T) ; /∗ thermal time 
onstant ∗/}The order of the blo
ks is arbitrary. The simulation/
ontrol algorithm manages all the inter
onne
ting signals. Ea
hnode must be driven by exa
tly one blo
k. We will now go through and des
ribe ea
h blo
k.2 www.omnisterra.
om/linux/pdplot
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4Fig. 1: Adema Czo
hralski Growth Algorithm (body mode)
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3.1 Re
ipe moduleThe re
ipe module is responsible for 
hanging system target values as the pro
ess pro
eeds. Primarily it will use the
urrent 
rystal length (LEN) as the index into the re
ipe table. For this simple simulation of body growth, the re
ipesimply takes the length from the 
rystal growth model (
alled L in the �gure, but LEN in the 
ode), and outputs atarget diameter DD and a target pull-rate PP.void r e 
 i p e ( i n t l , i n t diameter , i n t pu l l ) {/∗ l a t e r on , the s e w i l l be f un 
 t i on s o f l ∗//∗ f o r now , j u s t s e t t a r g e t diameter and pu l l r a t e ∗/new [ diameter ℄ = 1 5 . 0 ; /∗ 15
m ∗/new [ pu l l ℄ = 7 . 0 ; /∗ 
m/hour ∗/}3.2 Crystal Growth moduleThe 
rystal growth module is used to simulate how the 
rystal diameter varies with temperature and pull rate. Thissimple model is ad-ho
 and was not based on deep theory. For simulation a

ura
y, this is the most 
riti
al se
tion of
ode. The model gets three pie
es of information passed to it. They are the 
urrent pull rate: P, the 
urrent 
rystallength: LEN, and the 
urrent melt temperature: T. It is then responsible for updating the 
urrent diameter: D.The strategy is to 
ompare the melt temperature with the freezing point of Sili
on (1400C), and a maximum tem-perature at whi
h it is assumed that the 
rystal will simply no longer 
ondense (1800C). Bounds are also put onthe minimum and maximum pull rate. It is assumed that a pull rate higher than the maximum will 
ause the
rystal diameter to shrink to zero. We then 
ompute a temperature index �a� whi
h varies between 0 and 1 as thetemperature varies from freezing to melting. We also 
ompute a pull rate fa
tor �b� whi
h varies from 0 to 1 as pullrate varies from min to max. The new diameter is then set to a weighted value between DMIN and DMAX basedon sqrt(a*b).This simple model is su�
ient to demonstrate the simulation framework. It however does not 
onsider the timedependen
e on 
rystal growth rate or the 2nd order heatsinking e�e
t of length on the 
riti
al temperature.void model (p , l , t , d ) /∗ 
 a l 
 u l a t e d , based on p , l , t ∗/i n t p ; /∗ pu l l r a t e ∗/i n t l ; /∗ l ength ∗/i n t t ; /∗ temperature ∗/i n t d ; /∗ diameter ∗/{ /∗ l ength dependan
e i s 2nd order , i gnore f o r now ∗//∗ a l so , l eave out any time dependan
e f o r D ∗/double TC = 1400 . 0 ; /∗ 
 r i t i 
 a l melt temp ∗/double TM = 1800 . 0 ; /∗ maximum 
ondensing temp ∗/double PMIN = 0 . 0 ;double PMAX = 14 . 0 ;double DMIN = 0 . 0 ;double DMAX = 30 . 0 ;double x ;double a , b ;i f ( node [ t ℄ < TC) { /∗ below f r e e z i n g ? ∗/a=0;} e l s e i f ( node [ t ℄ > TM) { /∗ beyond 
ondensing ? ∗/a=1;} e l s e {
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a=(node [ t ℄−TC)/(TM−TC) ;}i f ( node [ p ℄ < PMIN) { /∗ below min pu l l r a t e ? ∗/b=0;} e l s e i f ( node [ p ℄ > PMAX) {b=1;} e l s e {b=(node [ p℄−PMIN)/(PMAX−PMIN) ;}new [ d ℄ = sq r t ( a∗b )∗ (DMAX−DMIN) + DMIN;}3.3 Diameter �lter moduleIn the lega
y Adema 8085 multibus 
ontroller, there is a large noise fa
tor on the diameter reading. This module isresponsible for doing a moving average on the diameter data to redu
e the noise. In addition, it is possible to usevarious non-linear digital �ltering te
hniques su
h as median �ltering here. For this simulation, we just pass the datathrough without modi�
ation.void d ia ( i n t d , i n t davg ) { /∗ f i l t e r diameter r ead ings ∗/new [ davg ℄ = node [ d ℄ ; /∗ f o r now , j u s t pass through ∗/}3.4 PID moduleThere are two traditional Proportional/Integral/Di�erential (PID) 
ontrollers in the algorithm. These are imple-mented with the same subroutine 
alled with di�erent PID parameter stru
tures at run time. The parameters areset in an SPid stru
turetypede f s t r u 
 t {double ds ta t e ; /∗ l a s t po s i t i on input ∗/double i s t a t e ; /∗ i n t e g r a t o r s t a t e ∗/double imax , imin ; /∗ max, min i n t e g r a t o r s t a t e ∗/double pgain ; /∗ p ropo r t i ona l gain ∗/double i g a i n ; /∗ i n t e g r a l gain ∗/double dgain ; /∗ d e r i v a t i v e gain ∗/} SPid ;SPid pid1 ; /∗ 
 r e a t e pid 
on t r o l s t r u 
 tu r e s ∗/SPid pid2 ; /∗ 
 r e a t e pid 
on t r o l s t r u 
 tu r e s ∗/PID 
ontrol algorithm implementation vary widely. The spe
i�
 implementation 
hosen here is one that in
ludesanti-windup on the integral 
ontroller, and 
omputes the di�erential term on the pro
ess variable instead of the statevariable. This strategy redu
es extreme pro
ess glit
hes when there is a step 
hange in 
ommand input.void pid ( i n t 
ommand , i n t pos i t i on , i n t dr ive , SPid ∗pid ) {double pterm ;double iterm ;double dterm ;double e r r o r ;
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e r r o r = node [ 
ommand℄−node [ po s i t i on ℄ ;pterm = pid−>pgain ∗ e r r o r ; /∗ p ropo r t i ona l ∗/pid−>i s t a t e += er r o r ; /∗ i n t e g r a l ∗/i f ( pid−>i s t a t e > pid−>imax ) { /∗ ant i wind−up ∗/pid−>i s t a t e = pid−>imax ;} e l s e i f ( pid−>i s t a t e < pid−>imin ) {pid−>i s t a t e = pid−>imin ;}iterm = pid−>iga i n ∗ pid−>i s t a t e ;dterm = pid−>dgain ∗ ( node [ po s i t i on ℄ − pid−>dsta t e ) ;pid−>dsta t e = node [ po s i t i on ℄ ;new [ dr ive ℄ = ( pterm + iterm −dterm ) ;}At startup, PID1 is initialized to integral windup limits of +/- 100.0 and PID parameters of 0.4, 0.3 and 0.0. PID2is initialized to the same windup limits and PID parameters of 3.0, 3.0 and 100.0;3.5 integrator moduleThe integrator module is responsible for 
onverting the pull rate into length. It is simply a generi
 trapezoidalintegration fun
tion with a gain 
oe�
ient:void i n t e g r a t o r ( in , out , gain )i n t in ;i n t out ;double gain ;{ double 
hunk ; /∗ new in t e g r a t ed por t i on o f s i g n a l ∗/
hunk = ( ( gain /2 . 0 ) ∗ ( o ld [ in ℄ + node [ in ℄ ) ∗ dt ) ;new [ out ℄ = node [ out ℄ + 
hunk ;}3.6 APR moduleThe APR module simply takes snapshots of the pull rate at a �xed interval. By keeping APR �xed for, in this 
ase,300 se
onds or 5 minutes at a time, any instability due to APR updating is eliminated. The lega
y 
ontroller had amore 
omplex algorithm due to a high error rate in the multibus ADC 
ir
uit, but it is not expe
ted that the lega
yalgorithm will be needed in a new 
ontrol loop with good data integrity.void apr ( i n t p , i n t avgpr , double de l ta t ime ) {/∗ 
ompute average pu l l r a t e ∗/s t a t i 
 double nextupdate =0.0;s t a t i 
 double hold ;i f ( simtime >= nextupdate ) {nextupdate+=de l ta t ime ;hold = node [ p ℄ ; /∗ take a snapshot ∗/} new [ avgpr ℄ = hold ;}
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3.7 TPS moduleThe fun
tion of the TPS module is to 
reate a 
ontrol input for the kva loop when given a pull rate P, and target pullrate PP. If the 
urrent pull rate is low, then the KVA set point will be lowered to produ
e faster 
rystalization. Ifthe pull rate is too high, and risking 
rystal defe
ts, the KVA will be raised to redu
e the rate of 
rystal aggregation.TPS is non-
riti
al over a range of values. It is important that it rapidly 
onverge without os
illation. For thesereasons, the TPS algorithm was 
hosen to be �rst order bang-bang loop 
ontroller. This type of 
ontroller rapidly
onverges with very small overshoot and is extremely aggressive about maintaining lo
k. This implementation doesnot in
lude a deadband, but this might be useful in the a
tual pro
ess 
ontroller.void tps ( i n t p , i n t pp , i n t t t ) {double d e l t a ;i f ( node [ pp ℄ > node [ p ℄ ) {d e l t a = −0.03∗dt ;} e l s e {d e l t a = 0.03∗ dt ;}new [ t t ℄ = node [ t t ℄+ de l t a ;}3.8 Thermal moduleThe thermal module is responsible for modelling the furna
e temperature given KVA input over time. The 
odein
ludes several measured 
onstants. The �rst set of 
onstants is the maximum allowed KVA (PMAX) and the steadystate temperature (TMAX) that would result from maximum input. The se
ond 
onstant is the average 
hill watertemperature whi
h tells the module what the furna
e will 
onverge to when no power is applied. Then there is a time
onstant express in re
ipri
al units of the simulation timestep. From this a simple dis
rete di�erential equation givesthe furna
e temperature as a fun
tion of time and KVA assuming a sin
le order time 
onstant response fun
tion.void therm (p , t ) /∗ thermal l ag o f furna
e g iven kva ∗/i n t p ; /∗ power in kva ∗/i n t t ; /∗ furna
e temperature node ∗/{ double PMAX = 150 . 0 ; /∗ max furna
e KVA ∗/double TMAX = 1800 . 0 ; /∗ steady s t a t e T at PMAX ∗double TCHILL = 20 . 0 ; /∗ temp o f 
oo lant water ∗/double E = . 0 0 1 ; /∗ 1/time 
onstant ∗/double power ;i f ( node [ p ℄ > PMAX) {power = PMAX;} e l s e {power = node [ p ℄ ;}new [ t ℄ = ( (E∗dt )∗ ( (TMAX−TCHILL)∗ ( power/PMAX) + TCHILL) ) ;new [ t ℄ += (1.0−(E∗dt ) )∗ node [ t ℄ ;}4 ResultsRunning the simulator involves 
ompiling and linking two �les whi
h 
ontain a total of 294 lines of C. The entirebuild pro
ess and simulation time for a 2-hour virtual 
rystal growth is 0.8 se
onds of 
omputer time. The qui
k
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speed to simulate an entire 
rystal growth pro
ess enables rapid pro
ess development and allows the system designerto easily gain insight into the pro
ess parameters by qui
kly running many �what-if� s
enarios.The simulations show the a
tual temperature approa
hing the target temperature with a �rst order time 
onstant.Only when the temperature is within the 
orre
t pro
ess range does the diameter in
rease towards the target diameter.The time quantization of the APR module is 
learly seen. The total length grows monotoni
ally as the APR isintegrated, and eventually trends towards a 
onstant growth rate and diameter.5 Con
lusionsThe DSIM algorithm is a simple and e�
ient method for managing the 
omplexity of a 
omplex non-linear 
ontrolsystem of multiple intera
ting blo
ks. It operates on an easily understood blo
k diagram model and a set of labelledpro
ess variables that are the shared signals among the fun
tional blo
ks. Although this report has des
ribed thealgorithm in terms of a simulator, it should be evident that the same stru
ture serves as a 
ontrol algorithm just aswell.To 
onvert the simulator into a 
ontroller, the algorithm simply sends any 
omputed values from internal 
omputationblo
ks su
h as PID to the a
tual pro
ess systems. It is proposed in another do
ument that the 
ontrol system usedshould be an RS-485 network to allow the pro
ess 
omputer to dire
tly send and re
eive pa
kets for reading andwriting every system hardware 
omponent. Any required input to the 
ontrol algorithm is similiarly read fromthe appropriate hardware unit. For example, this simple 
ontrol algorithm would require a 
amera module to readDiameter, an IR temperature sensor to read melt temperature, and a length en
oder to 
ompute Length and PullRate. The RS-485 network would have 
ommands for setting pull rate, rotation rate, and KVA.A more 
omplex re
ipe routine will be required whi
h is 
apable of interpolating the information 
urrently loadedin by a Datakey as a fun
tion of time and length. In addition, the simple blo
k diagram will need to be slightlymodi�ed to support seed, ne
k, shoulder, body and tail-o� modes. It is also a simple matter to 
reate operationalmodes that are partially manual in whi
h 
ertain of the feedba
k systems (eg: TPS) are turned o� and only 
ertainsystems enabled (eg: KVA or Temperature 
ontrol).The DSIM algorithm is robust and simple, while providing the essential 
ore fun
tionality of more 
omplex, pro-prietary graphi
al systems su
h as Labview. Be
ause DSIM does not 
ome with a mult-megabyte graphi
al inputfront-end, the overall reliability of the system is greater than that of a more 
omplex pa
kage. Be
ause the number offun
tional blo
ks required for furna
e 
ontrol is small, the large library of a 
ommer
ial system is not advantageous,while the operation of the hand-
oded DSIM blo
ks are easily modi�ed and deeply understood.For reliability, it is re
ommended that the 
ontrol system be ar
hite
ted as two independent programs: a simple DSIM
ontrol 
ore running with a very small, reliable set of 
ontrol 
ode and a se
ond graphi
al front end that provides theuser interfa
e to the 
ore 
ontroller. Linux provides numerous interpro
ess 
ommuni
ation primitives to implementthis ar
hite
ture e�
iently. The 
ore 
ontroller would then provide a textual 
ommand interfa
e somewhat like aMySQL server. A developer 
an debug the 
ore by 
hanging pro
ess parameters on the �y by typing 
ommandsto the 
ontroller. In a running produ
tion system, the 
ontroller is sent 
ommands by the GUI front end. Theadvantage of the textual 
ontrol link is that all pro
ess variable updates 
an be logged to a �le for debugging thesystem operation.Be
ause the 
entral DSIM 
ontroller is separate, it will be able to maintain pro
ess stability if the more 
omplexGUI system 
rashes. A well-designed system will tolerate a 
rash and qui
k restart of the GUI ba
kend without anydetrimental e�e
t on the pro
ess operation. In addition, the modular ar
hite
ture allows easily 
hanging the GUIwithout a�e
ting the 
ontrol algorithm itself.The 
omplete sour
e 
ode to the DSIM 
ore along with all the ADEMA-spe
i�
 library modules is available fromthe author. It is written in ANSI C and 
ompiles under the Gnu C 
ompiler on a Fedora 10 Linux system.
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hralski Growth Algorithm (body mode)


